Low-Support, High-Correlation
Finding Rare but Similar Items
Minhashing

The Problem
◆ Rather than finding high-support item-pairs in basket data, look for items that are highly "correlated."
 - If one appears in a basket, there is a good chance that the other does.
 - "Yachts and caviar" as itemsets: low support, but often appear together.

Correlation Versus Support
◆ A-Priori and similar methods are useless for low-support, high-correlation itemsets.
 - When support threshold is low, too many itemsets are frequent.
 - Memory requirements too high.
◆ A-Priori does not address correlation.

Matrix Representation of Item/Basket Data
◆ Columns = items.
◆ Rows = baskets.
◆ Entry \((r, c) = 1\) if item \(c\) is in basket \(r\); \(0\) if not.
◆ Assume matrix is almost all 0's.

In Matrix Form
\[
\begin{array}{c|cccc}
\text{item} & m & c & b & j \\
\hline
\text{item} & 1 & 1 & 0 & 1 \\
\text{item} & 1 & 0 & 1 & 0 \\
\text{item} & 1 & 0 & 0 & 1 \\
\text{item} & 0 & 1 & 0 & 0 \\
\text{item} & 1 & 0 & 0 & 1 \\
\text{item} & 1 & 1 & 0 & 1 \\
\text{item} & 0 & 1 & 0 & 1 \\
\text{item} & 0 & 1 & 0 & 1 \\
\end{array}
\]

Applications --- (1)
◆ Rows = customers; columns = items.
 - \((r, c) = 1\) if and only if customer \(r\) bought item \(c\).
 - Well correlated columns are items that tend to be bought by the same customers.
 - Used by on-line vendors to select items to "pitch" to individual customers.

Applications --- (2)
◆ Rows = (footprints of) shingles; columns = documents.
 - \((r, c) = 1\) if footprint \(r\) is present in document \(c\).
 - Find similar documents.

Applications --- (3)
◆ Rows and columns are both Web pages.
 - \((r, c) = 1\) if page \(r\) links to page \(c\).
 - Correlated columns are pages with many of the same in-links.
 - These pages may be about the same topic.

Assumptions --- (1)
1. Number of items allows a small amount of main-memory/item.
 - E.g., main memory = \(\text{Number of items} \times 100\)
2. Too many items to store anything in main-memory for each pair of items.
Assumptions --- (2)
3. Too many baskets to store anything in main memory for each basket.
4. Data is very sparse: it is rare for an item to be in a basket.

From Correlation to Similarity
- Statistical correlation is too hard to compute, and probably meaningless.
 - Most entries are 0, so correlation of columns is always high.
- Substitute “similarity,” as in shingles-and-documents study.

Similarity of Columns
- Think of a column as the set of rows in which it has 1.
- The similarity of columns \(C_1 \) and \(C_2 \) is the ratio of the sizes of the intersection and union of \(C_1 \) and \(C_2 \):
 \[\text{Sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]

Example
\[
\begin{array}{c|c|c|c}
C_1 & C_2 & \text{Sim}(C_1, C_2) \\
\hline
0 & 0 & 2/5 = 0.4 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
\end{array}
\]

Outline of Algorithm
1. Compute “signatures” (“sketches”) of columns = small summaries of columns.
 - Read from disk to main memory.
2. Examine signatures in main memory to find similar signatures.
 - Essential: similarity of signatures and columns are related.
3. Check that columns with similar signatures are really similar (optional).

Signatures
- Key idea: “hash” each column \(C \) to a small signature \(\text{Sig}(C) \), such that:
 1. \(\text{Sig}(C) \) is small enough that we can fit a signature in main memory for each column.
 2. \(\text{Sim}(C_1, C_2) \) is the same as the “similarity” of \(\text{Sig}(C_1) \) and \(\text{Sig}(C_2) \).

An Idea That Doesn’t Work
- Pick 100 rows at random, and let the signature of column \(C \) be the 100 bits of \(C \) in those rows.
- Because the matrix is sparse, many columns would have 00...0 as a signature, yet be very dissimilar because their 1’s are in different rows.

Four Types of Rows
- Given columns \(C_1 \) and \(C_2 \), rows may be classified as:
 \[
 \begin{array}{c|c|c|c}
 a & b & c & d \\
 \hline
 0 & 1 & 0 & 0 \\
 1 & 0 & 1 & 0 \\
 \end{array}
 \]
- Also, \(a + b + c + d = n \) rows of type \(a \), etc.
- Note \(\text{Sim}(C_1, C_2) = a(n) + b(n) + c(n) \).

Minhashing
- Imagine the rows permuted randomly.
- Define “hash” function \(h(C) \) = the number of the first (in the permuted order) row in which column \(C \) has 1.
- Use several (100?) independent hash functions to create a signature.
Minhashing Example

Input matrix
\[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
\end{array}
\]

Signature matrix \(M \)
\[
\begin{array}{cccc}
2 & 0 & 1 & 0 \\
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 \\
\end{array}
\]

Surprising Property
- The probability (over all permutations of the rows) that \(h(C_1) = h(C_2) \) is the same as \(\text{Sim}(C_1, C_2) \).
- Both are \(\frac{a}{(a+b+c)!} \).
- Why?
 - Look down columns \(C_1 \) and \(C_2 \) until we see a 1.
 - If it's a type a row, then \(h(C_1) = h(C_2) \). If a type b or c row, then not.

Similarity for Signatures
- The similarity of signatures is the fraction of the rows in which they agree.
- Remember, each row corresponds to a permutation or "hash function."

Minhash Signatures
- Pick (say) 100 random permutations of the rows.
- Think of \(\text{Sig}(C) \) as a column vector.
- Let \(\text{Sig}(C)[i] = \) row number of the first row with 1 in column \(C \), for \(i \)th permutation.

Implementation --- (1)
- Number of rows = 1 billion.
- Hard to pick a random permutation from 1…billion.
- Representing a random permutation requires billion entries.
- Accessing rows in permuted order is tough!
- The number of passes would be prohibitive.

Implementation --- (2)
1. Pick (say) 100 hash functions.
2. For each column \(c \) and each hash function \(h_i \), keep a “slot” \(M(i, c) \) for that minhash value.
3. for each row \(r \), and for each column \(c \) with 1 in row \(r \), and for each hash function \(h_i \) do
 - if \(h_i(r) \) is a smaller value than \(M(i, c) \) then
 \[M(i, c) := h_i(r) \].
- Needs only one pass through the data.

Example
\[
\begin{array}{ccc}
\text{Row} & C1 & C2 \\
1 & 1 & 0 \\
2 & 0 & 1 \\
3 & 1 & 0 \\
4 & 1 & 0 \\
5 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{crr}
h(1) & = 1 & 1 \\
h(2) & = 2 & 1 \\
h(3) & = 3 & 2 \\
h(4) & = 4 & 2 \\
h(5) & = 1 & 1 \\
\end{array}
\]

Candidate Generation
- Pick a similarity threshold \(s \), a fraction < 1.
- A pair of columns \(c \) and \(d \) is a candidate pair if their signatures agree in at least fraction \(s \) of the rows.
 - i.e., \(M(i, c) = M(i, d) \) for at least fraction \(s \) values of \(i \).
The Problem with Checking Candidates

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10^6 columns implies 5*10^12 comparisons.
- At 1 microsecond/comparison: 6 days.