Low-Support, High-Correlation
Finding Rare but Similar Items
Minhashing

The Problem
- Rather than finding high-support item-pairs in basket data, look for items that are highly “correlated.”
 - If one appears in a basket, there is a good chance that the other does.
 - “Yachts and caviar” as itemsets: low support, but often appear together.

Correlation Versus Support
- A-Priori and similar methods are useless for low-support, high-correlation itemsets.
- When support threshold is low, too many itemsets are frequent.
 - Memory requirements too high.
- A-Priori does not address correlation.

Matrix Representation of Item/Basket Data
- Columns = items.
- Rows = baskets.
- Entry \((r, c) = 1\) if item \(c\) is in basket \(r\); \(= 0\) if not.
- Assume matrix is almost all 0’s.

Applications --- (1)
- Rows = customers; columns = items.
 - \((r, c) = 1\) if and only if customer \(r\) bought item \(c\).
 - Well correlated columns are items that tend to be bought by the same customers.
 - Used by on-line vendors to select items to “pitch” to individual customers.
Applications --- (2)

- Rows = (footprints of) shingles; columns = documents.
 - \((r, c) = 1\) iff footprint \(r\) is present in document \(c\).
 - Find similar documents.

Applications --- (3)

- Rows and columns are both Web pages.
 - \((r, c) = 1\) iff page \(r\) links to page \(c\).
 - Correlated columns are pages with many of the same in-links.
 - These pages may be about the same topic.

Assumptions --- (1)

1. Number of items allows a small amount of main-memory/item.
 - E.g., main memory = \(\text{Number of items} \times 100\)
2. Too many items to store anything in main-memory for each pair of items.

Assumptions --- (2)

3. Too many baskets to store anything in main memory for each basket.
4. Data is very sparse: it is rare for an item to be in a basket.

From Correlation to Similarity

- Statistical correlation is too hard to compute, and probably meaningless.
 - Most entries are 0, so correlation of columns is always high.
 - Substitute “similarity,” as in shingles-and-documents study.

Similarity of Columns

- Think of a column as the set of rows in which it has 1.
- The \textit{similarity} of columns \(C_1\) and \(C_2\) = \(\text{Sim}(C_1, C_2)\) = is the ratio of the sizes of the intersection and union of \(C_1\) and \(C_2\).
 - \(\text{Sim}(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2| = J\text{accard measure.}\)
Example

\[
\begin{array}{cc}
C_1 & C_2 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
0 & 1 \\
\end{array}
\]

\[\text{Sim}(C_1, C_2) = \frac{2}{5} = 0.4\]

Outline of Algorithm

1. Compute “signatures” (“sketches”) of columns = small summaries of columns.
 - Read from disk to main memory.
2. Examine signatures in main memory to find similar signatures.
 - Essential: similarity of signatures and columns are related.
3. Check that columns with similar signatures are really similar (optional).

Signatures

- Key idea: “hash” each column \(C \) to a small signature \(\text{Sig}(C) \), such that:
 1. \(\text{Sig}(C) \) is small enough that we can fit a signature in main memory for each column.
 2. \(\text{Sim}(C_1, C_2) \) is the same as the “similarity” of \(\text{Sig}(C_1) \) and \(\text{Sig}(C_2) \).

An Idea That Doesn’t Work

- Pick 100 rows at random, and let the signature of column \(C \) be the 100 bits of \(C \) in those rows.
- Because the matrix is sparse, many columns would have 00...0 as a signature, yet be very dissimilar because their 1’s are in different rows.

Four Types of Rows

- Given columns \(C_1 \) and \(C_2 \), rows may be classified as:
 - \(a \): \(1 \) \(1 \)
 - \(b \): \(1 \) \(0 \)
 - \(c \): \(0 \) \(1 \)
 - \(d \): \(0 \) \(0 \)
- Also, \(a = \# \) rows of type \(a \), etc.
- Note \(\text{Sim}(C_1, C_2) = \frac{a}{a + b + c} \).

Minhashing

- Imagine the rows permuted randomly.
- Define “hash” function \(h(C) \) = the number of the first (in the permuted order) row in which column \(C \) has 1.
- Use several (100?) independent hash functions to create a signature.
Minhashing Example

Input matrix

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Surprising Property

- The probability (over all permutations of the rows) that \(h(C_1) = h(C_2) \) is the same as \(\text{Sim}(C_1, C_2) \).
- Both are \(\frac{a}{(a + b + c)!} \)
- Why?
 - Look down columns \(C_1 \) and \(C_2 \) until we see a 1.
 - If it’s a type \(a \) row, then \(h(C_1) = h(C_2) \). If a type \(b \) or \(c \) row, then not.

Similarity for Signatures

- The similarity of signatures is the fraction of the rows in which they agree.
 - Remember, each row corresponds to a permutation or “hash function.”

Min Hashing – Example

Input matrix

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Similarities:

- Col.-Col. 0.75 0.75 0 0
- Sig.-Sig. 0.67 1.00 0 0

Minhash Signatures

- Pick (say) 100 random permutations of the rows.
- Think of \(\text{Sig}(C) \) as a column vector.
- Let \(\text{Sig}(C)[i] \) = row number of the first row with 1 in column \(C \), for \(i \)th permutation.

Implementation --- (1)

- Number of rows = 1 billion.
- Hard to pick a random permutation from 1...billion.
- Representing a random permutation requires billion entries.
- Accessing rows in permuted order is tough!
 - The number of passes would be prohibitive.
Implementation --- (2)

1. Pick (say) 100 hash functions.
2. For each column \(c \) and each hash function \(h_i \), keep a “slot” \(M(i, c) \) for that minhash value.
3. **for** each row \(r \), and for each column \(c \) with 1 in row \(r \), and for each hash function \(h_i \) **do**
 - if \(h_i(r) \) is a smaller value than \(M(i, c) \) then
 - \(M(i, c) := h_i(r) \).
 ◆ Needs only one pass through the data.

Example

<table>
<thead>
<tr>
<th>Row</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(h(x) = x \mod 5 \)
\(g(x) = 2x + 1 \mod 5 \)

\(h(1) \)	1	1
\(g(1) \)	3	3
\(h(2) \)	2	1
\(g(2) \)	0	3
\(h(3) \)	3	2
\(g(3) \)	0	0
\(h(4) \)	4	1
\(g(4) \)	4	2
\(h(5) \)	0	0
\(g(5) \)	1	2

Candidate Generation

◆ Pick a similarity threshold \(s \), a fraction < 1.
◆ A pair of columns \(c \) and \(d \) is a **candidate pair** if their signatures agree in at least fraction \(s \) of the rows.
 • i.e., \(M(i, c) = M(i, d) \) for at least fraction \(s \) values of \(i \).

The Problem with Checking Candidates

◆ While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
 ◆ **Example:** \(10^6 \) columns implies \(5 \times 10^{11} \) comparisons.
 ◆ At 1 microsecond/comparison: 6 days.