Low-Support, High-Correlation

Finding Rare but Similar Items
Minhashing

The Problem

- Rather than finding high-support item-pairs in basket data, look for items that are highly “correlated.”
 - If one appears in a basket, there is a good chance that the other does.
 - “Yachts and caviar” as itemsets: low support, but often appear together.

Correlation Versus Support

- A-Priori and similar methods are useless for low-support, high-correlation itemsets.
- When support threshold is low, too many itemsets are frequent.
 - Memory requirements too high.
- A-Priori does not address correlation.
Matrix Representation of Item/Basket Data

◆ Columns = items.
◆ Rows = baskets.
◆ Entry \((r, c)\) = 1 if item \(c\) is in basket \(r\); = 0 if not.
◆ Assume matrix is almost all 0’s.

In Matrix Form

<table>
<thead>
<tr>
<th>m</th>
<th>c</th>
<th>p</th>
<th>b</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Applications --- (1)

◆ Rows = customers; columns = items.
 - \((r, c)\) = 1 if and only if customer \(r\) bought item \(c\).
 - Well correlated columns are items that tend to be bought by the same customers.
 - Used by on-line vendors to select items to “pitch” to individual customers.
Applications --- (2)

- Rows = (footprints of) shingles; columns = documents.
 - \((r, c) = 1\) iff footprint \(r\) is present in document \(c\).
 - Find similar documents.

Applications --- (3)

- Rows and columns are both Web pages.
 - \((r, c) = 1\) iff page \(r\) links to page \(c\).
 - Correlated columns are pages with many of the same in-links.
 - These pages may be about the same topic.

Assumptions --- (1)

1. Number of items allows a small amount of main-memory/item.
 - E.g., main memory = \(\text{Number of items} \times 100\)
2. Too many items to store anything in main-memory for each pair of items.
Assumptions --- (2)

3. Too many baskets to store anything in main memory for each basket.
4. Data is very sparse: it is rare for an item to be in a basket.

From Correlation to Similarity

Statistical correlation is too hard to compute, and probably meaningless.

• Most entries are 0, so correlation of columns is always high.
• Substitute “similarity,” as in shingles-and-documents study.

Similarity of Columns

• Think of a column as the set of rows in which it has 1.
• The similarity of columns \(C_1 \) and \(C_2 = Sim(C_1,C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \) is the ratio of the sizes of the intersection and union of \(C_1 \) and \(C_2 \).
 • \(Sim(C_1,C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} = Jaccard \) measure.
Example

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$\text{Sim}(C_1, C_2) = \frac{2}{5} = 0.4$

Outline of Algorithm

1. Compute “signatures” (“sketches”) of columns = small summaries of columns.
 - Read from disk to main memory.
2. Examine signatures in main memory to find similar signatures.
 - Essential: similarity of signatures and columns are related.
3. Check that columns with similar signatures are really similar (optional).

Signatures

- Key idea: “hash” each column C to a small signature $\text{Sig}(C)$, such that:
 1. $\text{Sig}(C)$ is small enough that we can fit a signature in main memory for each column.
 2. $\text{Sim}(C_1, C_2)$ is the same as the “similarity” of $\text{Sig}(C_1)$ and $\text{Sig}(C_2)$.
An Idea That Doesn’t Work

◆ Pick 100 rows at random, and let the signature of column C be the 100 bits of C in those rows.
◆ Because the matrix is sparse, many columns would have 00...0 as a signature, yet be very dissimilar because their 1’s are in different rows.

Four Types of Rows

◆ Given columns C₁ and C₂, rows may be classified as:

<table>
<thead>
<tr>
<th></th>
<th>C₁</th>
<th>C₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

◆ Also, a = # rows of type a, etc.
◆ Note Sim (C₁, C₂) = a / (a + b + c).

Minhashing

◆ Imagine the rows permuted randomly.
◆ Define “hash” function h (C) = the number of the first (in the permuted order) row in which column C has 1.
◆ Use several (100?) independent hash functions to create a signature.
Minhashing Example

<table>
<thead>
<tr>
<th>Input matrix</th>
<th>Signature matrix M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 3 1 0 1 0</td>
<td>2 1 2 1 2 1 2 1</td>
</tr>
<tr>
<td>3 2 4 1 0 0 1</td>
<td>2 1 4 1 2 1 2</td>
</tr>
<tr>
<td>7 1 7 0 1 0 1</td>
<td>1 2 1 2 1 2</td>
</tr>
<tr>
<td>6 3 6 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>2 6 1 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>5 7 2 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>4 5 5 1 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Surprising Property

- The probability (over all permutations of the rows) that $h(C_1) = h(C_2)$ is the same as $Sim(C_1, C_2)$.
- Both are $\frac{1}{a(a+b+c)!}$
- Why?
 - Look down columns C_1 and C_2 until we see a 1.
 - If it's a type a row, then $h(C_1) = h(C_2)$. If a type b or c row, then not.

Similarity for Signatures

- The similarity of signatures is the fraction of the rows in which they agree.
- Remember, each row corresponds to a permutation or "hash function."
Min Hashing - Example

Input matrix

\[
\begin{array}{cccc}
1 & 4 & 3 & 1010 \\
3 & 2 & 4 & 1001 \\
7 & 1 & 7 & 0101 \\
6 & 3 & 6 & 0101 \\
2 & 6 & 1 & 0101 \\
5 & 7 & 2 & 1010 \\
4 & 5 & 5 & 1010 \\
\end{array}
\]

Signature matrix \(M \)

\[
\begin{array}{cccc}
2 & 1 & 2 & 1 \\
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
\end{array}
\]

Similarities:

- \(1-3\) 0.75
- \(2-4\) 0.75
- \(1-2\) 0
- \(3-4\) 0

Minhash Signatures

- Pick (say) 100 random permutations of the rows.
- Think of \(Sig(C) \) as a column vector.
- Let \(Sig(C)[i] = \) row number of the first row with 1 in column \(C \), for \(i \)th permutation.

Implementation --- (1)

- Number of rows = 1 billion.
- Hard to pick a random permutation from 1...billion.
- Representing a random permutation requires billion entries.
- Accessing rows in permuted order is tough!
 - The number of passes would be prohibitive.
Implementation --- (2)

1. Pick (say) 100 hash functions.
2. For each column c and each hash function h_i, keep a “slot” $M(i, c)$ for that minhash value.
3. for each row r, and for each column c with 1 in row r, and for each hash function h_i do
 if $h_i(r)$ is a smaller value than $M(i, c)$ then
 $M(i, c) := h_i(r)$.
 ◆ Needs only one pass through the data.

Example

<table>
<thead>
<tr>
<th>Row</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$h(x) = x \mod 5$
$g(x) = 2x + 1 \mod 5$

Candidate Generation

◆ Pick a similarity threshold s, a fraction < 1.
◆ A pair of columns c and d is a candidate pair if their signatures agree in at least fraction s of the rows.
 ◆ i.e., $M(i, c) = M(i, d)$ for at least fraction s values of i.
The Problem with Checking Candidates

◆ While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
◆ Example: 10^6 columns implies 5×10^{11} comparisons.
◆ At 1 microsecond/comparison: 6 days.