“Association Rules”

Market Baskets
Frequent Itemsets
A-priori Algorithm

The Market-Basket Model

- A large set of \textit{items}, e.g., things sold in a supermarket.
- A large set of \textit{baskets}, each of which is a small set of the items, e.g., the things one customer buys on one day.

Support

- Simplest question: find sets of items that appear “frequently” in the baskets.
- \textbf{Support} for itemset \(I \) = the number of baskets containing all items in \(I \).
- Given a support threshold \(s \), sets of items that appear in \(\geq s \) baskets are called \textit{frequent itemsets}.

Applications --- (1)

- \textit{Real market baskets}: chain stores keep terabytes of information about what customers buy together.
 - Tells how typical customers navigate stores, lets them position tempting items.
 - Suggests tie-in “tricks,” e.g., run sale on diapers and raise the price of beer.
 - High support needed, or no $$’s.$$

Applications --- (2)

- \textit{“Baskets” = documents; “items” = words in those documents}.
 - Lets us find words that appear together unusually frequently, i.e., linked concepts.
- \textit{“Baskets” = sentences, “items” = documents containing those sentences}.
 - Items that appear together too often could represent plagiarism.

Applications --- (3)

- \textit{“Baskets” = Web pages; “items” = linked pages}.
 - Pairs of pages with many common references may be about the same topic.
- \textit{“Baskets” = Web pages \(p \); “items” = pages that link to \(p \)}.
 - Pages with many of the same links may be mirrors or about the same topic.

Example

- \textbf{Items} = \{milk, coke, pepsi, beer, juice\}.
- \textbf{Support} = 3 baskets.
 - \(B_1 = \{m, c, b\} \)
 - \(B_2 = \{m, p, b\} \)
 - \(B_3 = \{c, b, j\} \)
 - \(B_4 = \{m, c, b, j\} \)
- \textbf{Frequent itemsets}: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{c, b\}, \{j, c\}.

Important Point

- “Market Baskets” is an abstraction that models any many-many relationship between two concepts: “items” and “baskets.”
 - Items need not be “contained” in baskets.
 - The only difference is that we count co-occurrences of items related to a basket, not vice-versa.

Scale of Problem

- \textit{WalMart sells 100,000 items and can store billions of baskets}.
- \textit{The Web has over 100,000,000 words and billions of pages}.
Association Rules

* If-then rules about the contents of baskets.
* \{i_1, i_2, ..., i_k\} \rightarrow j means: “if a basket contains all of i_1, ..., i_k then it is likely to contain j.”
* Confidence of this association rule is the probability of j given i_1, ..., i_k.

Example

- B_1 = \{m, c, b\}
- B_2 = \{m, p, j\}
- B_3 = \{m, b\}
- B_4 = \{c, j\}
- B_5 = \{m, p, b\}
- B_6 = \{m, c, b, j\}
- B_7 = \{c, b, j\}
- B_8 = \{b, c\}

* For association rule \{m, b\} \rightarrow c, item c appears in 5/8 of the baskets.
* Interest = | 2/4 - 5/8 | = 1/8 — not very interesting.

Relationships Among Measures

* Rules with high support and confidence may be useful even if they are not “interesting.”
* We don’t care if buying bread causes people to buy milk, or whether simply a lot of people buy both bread and milk.
* But high interest suggests a cause that might be worth investigating.

Finding Association Rules

* A typical question: “Find all association rules with support \geq s and confidence \geq c.”
 * Note: “support” of an association rule is the support of the set of items it mentions.
 * Hard part: finding the high-support (frequent) itemsets.
 * Checking the confidence of association rules involving those sets is relatively easy.

Computation Model

* Typically, data is kept in a “flat file” rather than a database system.
 * Stored on disk.
 * Stored basket-by-basket.
 * Expand baskets into pairs, triples, etc. as you read baskets.

Interest

* The interest of an association rule \(X \rightarrow Y \) is the absolute value of the amount by which the confidence differs from the probability of Y.

File Organization

* The true cost of mining disk-resident data is usually the number of disk I/O’s.
* In practice, association-rule algorithms read the data in passes — all baskets read in turn.
* Thus, we measure the cost by the number of passes an algorithm takes.
Main-Memory Bottleneck
◆ For many frequent-itemset algorithms, main memory is the critical resource.
 • As we read baskets, we need to count something, e.g., occurrences of pairs.
 • The number of different things we can count is limited by main memory.
 • Swapping counts in/out is a disaster.

Details of Main-Memory Counting
◆ Two approaches:
 1. Count all item pairs, using a triangular matrix.
 2. Keep a table of triples \((i, j, c) \) = the count of the pair of items \((i, j) \) in \(c \).
◆ (1) requires only (say) 4 bytes/pair.
◆ (2) requires 12 bytes, but only for those pairs with count > 0.

Details of Approach #2
◆ You need a hash table, with \((i, j, c) \) as the key, to locate \((i, j, c) \) triples efficiently.
 • Typically, the cost of the hash structure can be neglected.
◆ Total bytes used is about \(12p \), where \(p \) is the number of pairs that actually occur.
 • Beats triangular matrix if at most 1/3 of possible pairs actually occur.

Finding Frequent Pairs
◆ The hardest problem often turns out to be finding the frequent pairs.
◆ We’ll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.

Naïve Algorithm
◆ Read file once, counting in main memory the occurrences of each pair.
 • Expand each basket of \(n \) items into its \(n(n-1)/2 \) pairs.
 • Fails if \(n^2 \) exceeds main memory.
 • Remember: \(n \) items can be 100K (Wal-Mart) or 10B (Web pages).

Details of Approach #1
◆ Number items 1, 2, ...
 ◆ Keep pairs in the order \((1,2), (1,3), ..., (1,n), (2,3), (2,4), ..., (2,n), (3,4), ..., (n-1,n) \).
 ◆ Find pair \((i,j) \) at the position \((i-1)(n-i)/2 + j - i \).
 ◆ Total number of pairs \(n(n-1)/2 \); total bytes about \(2n^2 \).

A-Priori Algorithm --- (1)
◆ A two-pass approach called a-priori limits the need for main memory.
 • Key idea: monotonicity: if a set of items appears at least \(s \) times, so does every subset.
 • Contra-positive for pairs: if item \(i \) does not appear in \(s \) baskets, then no pair including \(i \) can appear in \(s \) baskets.

A-Priori Algorithm --- (2)
◆ Pass 1: Read baskets and count in main memory the occurrences of each item.
 • Requires only memory proportional to \(n \) items.
◆ Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 • Requires memory proportional to square of frequent items only.
Detail for A-Priori

- You can use the triangular matrix method with \(n \) = number of frequent items.
 - Saves space compared with storing triples.
 - **Trick:** number frequent items 1, 2, ..., and keep a table relating new numbers to original item numbers.

A-Priori for All Frequent Itemsets

- One pass for each \(k \).
- Needs room in main memory to count each candidate \(k \)-tuple.
- For typical market-basket data and reasonable support (e.g., 1\%), \(k = 2 \) requires the most memory.

Frequent Triples, Etc.

- For each \(k \), we construct two sets of \(k \)-tuples:
 - \(C_k = \) candidate \(k \)-tuples = those that might be frequent sets (support \(\geq s \)) based on information from the pass for \(k - 1 \).
 - \(L_k = \) the set of truly frequent \(k \)-tuples.

Frequent Itemsets --- (2)

- \(C_1 = \) all items
- \(L_1 = \) those counted on first pass to be frequent.
- \(C_2 = \) pairs, both chosen from \(L_1 \).
 - In general, \(C_k = k \)-tuples, each \(k - 1 \) of which is in \(L_{k-1} \).
 - \(L_2 = \) members of \(C_2 \) with support \(\geq s \).