“Association Rules”

Market Baskets
Frequent Itemsets
A-priori Algorithm

The Market-Basket Model

- A large set of items, e.g., things sold in a supermarket.
- A large set of baskets, each of which is a small set of the items, e.g., the things one customer buys on one day.

Support

- Simplest question: find sets of items that appear “frequently” in the baskets.
- Support for itemset \(I \) = the number of baskets containing all items in \(I \).
- Given a support threshold \(s \), sets of items that appear in \(\geq s \) baskets are called frequent itemsets.
Example

- Items = \{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.
 - \(B_1 = \{m, c, b\}\)
 - \(B_2 = \{m, p, j\}\)
 - \(B_3 = \{m, b\}\)
 - \(B_4 = \{c, j\}\)
 - \(B_5 = \{m, p, b\}\)
 - \(B_6 = \{m, c, b, j\}\)
 - \(B_7 = \{c, b, j\}\)
 - \(B_8 = \{b, c\}\)
- Frequent itemsets: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{c, b\}, \{j, c\}.

Important Point

- "Market Baskets" is an abstraction that models any many-many relationship between two concepts: "items" and "baskets."
 - Items need not be "contained" in baskets.
 - The only difference is that we count co-occurrences of items related to a basket, not vice-versa.

Applications --- (1)

- Real market baskets: chain stores keep terabytes of information about what customers buy together.
 - Tells how typical customers navigate stores, lets them position tempting items.
 - Suggests tie-in "tricks," e.g., run sale on diapers and raise the price of beer.
 - High support needed, or no $$'s.$
Applications --- (2)

- “Baskets” = documents; “items” = words in those documents.
 - Lets us find words that appear together unusually frequently, i.e., linked concepts.

- “Baskets” = sentences, “items” = documents containing those sentences.
 - Items that appear together too often could represent plagiarism.

Applications --- (3)

- “Baskets” = Web pages; “items” = linked pages.
 - Pairs of pages with many common references may be about the same topic.

- “Baskets” = Web pages \(p \); “items” = pages that link to \(p \).
 - Pages with many of the same links may be mirrors or about the same topic.

Scale of Problem

- WalMart sells 100,000 items and can store billions of baskets.
- The Web has over 100,000,000 words and billions of pages.
Association Rules

◆ If-then rules about the contents of baskets.
◆ \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \).”
◆ Confidence of this association rule is the probability of \(j \) given \(i_1, \ldots, i_k \).

Example

\(B_1 = \{m, c, b\} \) \(B_2 = \{m, p, j\} \)
\(B_3 = \{m, b\} \) \(B_4 = \{c, j\} \)
\(B_5 = \{m, p, b\} \) \(B_6 = \{m, c, b, j\} \)
\(B_7 = \{c, b, j\} \) \(B_8 = \{b, c\} \)
◆ An association rule: \(\{m, b\} \rightarrow c \).
◆ Confidence = \(\frac{2}{4} = 50\% \).

Interest

◆ The interest of an association rule \(X \rightarrow Y \) is the absolute value of the amount by which the confidence differs from the probability of \(Y \).
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

◆ For association rule \(\{m, b\} \rightarrow c \), item \(c \) appears in \(5/8 \) of the baskets.
◆ Interest = \(|2/4 - 5/8| = 1/8 \) --- not very interesting.

Relationships Among Measures

◆ Rules with high support and confidence may be useful even if they are not “interesting.”
 • We don’t care if buying bread causes people to buy milk, or whether simply a lot of people buy both bread and milk.
 • But high interest suggests a cause that might be worth investigating.

Finding Association Rules

◆ A typical question: “find all association rules with support \(\geq s \) and confidence \(\geq c \).”
 • Note: “support” of an association rule is the support of the set of items it mentions.
◆ Hard part: finding the high-support (frequent) itemsets.
 • Checking the confidence of association rules involving those sets is relatively easy.
Computation Model

- Typically, data is kept in a “flat file” rather than a database system.
 - Stored on disk.
 - Stored basket-by-basket.
 - Expand baskets into pairs, triples, etc. as you read baskets.

File Organization

```
<table>
<thead>
<tr>
<th>Item</th>
<th>Etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basket 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basket 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Computation Model --- (2)

- The true cost of mining disk-resident data is usually the number of disk I/O’s.
- In practice, association-rule algorithms read the data in passes --- all baskets read in turn.
- Thus, we measure the cost by the number of passes an algorithm takes.
Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
 - As we read baskets, we need to count something, e.g., occurrences of pairs.
 - The number of different things we can count is limited by main memory.
 - Swapping counts in/out is a disaster.

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs.
- We’ll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.

Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair.
 - Expand each basket of n items into its \(n(n-1)/2 \) pairs.
- Fails if \((\#\text{items})^2\) exceeds main memory.
 - Remember: \#items can be 100K (Wal-Mart) or 10B (Web pages).
Details of Main-Memory Counting

- **Two approaches:**
 1. Count all item pairs, using a triangular matrix.
 2. Keep a table of triples \([i, j, c]\) = the count of the pair of items \(\{i, j\}\) is \(c\)
- (1) requires only (say) 4 bytes/pair.
- (2) requires 12 bytes, but only for those pairs with count > 0.

Details of Approach #1

- Number items 1, 2,...
- Keep pairs in the order \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots, \{n-1,n\}\).
- Find pair \(\{i, j\}\) at the position
 \((i-1)(n-i)/2 + j - i\).
- Total number of pairs \(n(n-1)/2\); total bytes about \(2n^2\).
Details of Approach #2

- You need a hash table, with \(i\) and \(j\) as the key, to locate \((i, j, c)\) triples efficiently.
 - Typically, the cost of the hash structure can be neglected.
- Total bytes used is about \(12p\), where \(p\) is the number of pairs that actually occur.
 - Beats triangular matrix if at most 1/3 of possible pairs actually occur.

A-Priori Algorithm --- (1)

- A two-pass approach called a-priori limits the need for main memory.
- Key idea: monotonicity: if a set of items appears at least \(s\) times, so does every subset.
 - Contrapositive for pairs: if item \(i\) does not appear in \(s\) baskets, then no pair including \(i\) can appear in \(s\) baskets.

A-Priori Algorithm --- (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to \#items.
- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 - Requires memory proportional to square of frequent items only.
You can use the triangular matrix method with $n = $ number of frequent items.

- Saves space compared with storing triples.
- Trick: number frequent items 1,2,... and keep a table relating new numbers to original item numbers.

For each k, we construct two sets of k-tuples:
- $C_k = $ candidate k-tuples = those that might be frequent sets (support $\geq s$) based on information from the pass for $k-1$.
- $L_k = $ the set of truly frequent k-tuples.
A-Priori for All Frequent Itemsets

- One pass for each k.
- Needs room in main memory to count each candidate k-tuple.
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory.

Frequent Itemsets --- (2)

- C_1 = all items
- L_1 = those counted on first pass to be frequent.
- C_2 = pairs, both chosen from L_1.
- In general, $C_k = k$-tuples, each $k-1$ of which is in L_{k-1}.
- L_k = members of C_k with support $\geq s$.