Theory of Computation

- Studying various computing devices and comparing their powers
 - It answers questions like what can be computed (by what devices) and what cannot.
- Space and Time: Measure them qualitatively, not quantitatively.
 - Do they need a finite amount of space?
 - Does the computing ever stop?
- Looking for the most powerful computing devices
- Identifying problems which can or cannot be computed (by what devices)

How to Represent a Problem?

- Computing involves different inputs, e.g., integers, reals, characters, strings, …
- The presentation needs to be simple and expressive.
- Anything can be represented by a string of characters
- Strings and numbers can be represented by each other.
 - each number is entered by a sequence of key strokes;
 - each string is stored as a binary number in a computer.
- Representation of integers:
 - Unary (e.g., 0^5 for 5)
 - Binary (e.g., 101 for 5)
Characters and Strings

\(\Sigma \) — a non-empty, finite set of (abstract) symbols, called the alphabet, whose elements are also called letters (or characters)

\(\Sigma^* \) — (infinite) set of all finite sequences over \(\Sigma \), called words (or strings)

A word \(w \in \Sigma^* \) has length, \(\text{len}(w) \), the number of letters in the sequence \(w \) (0, 1, 2, …)

\(\varepsilon \) denotes the empty (or null) string with \(\text{len}(\varepsilon) = 0 \).

\(0^n \) denotes \(n \) copies of 0; \(0^0 = \varepsilon \).

Formal Language Operations

A formal language \(L \) is a subset of \(\Sigma^* \), \(L \subseteq \Sigma^* \)

The empty set is written as \(\emptyset \).

\(\varepsilon \), \(\emptyset \), and \(\{\varepsilon\} \) are all distinct entities

Languages can be combined with the familiar set operations: union, intersection, and complement

Languages can also be concatenated by forming all the possible combinations of concatenations of their member strings. For \(L_1, L_2 \subseteq \Sigma^* \),

\(L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} \)

Power of Languages

Language concatenation behaves as a “multiplicative” operator

\(\emptyset \) is a “zero” and

\(\{\varepsilon\} \) is an “identity”.

In this sense we define powers of a language.

For \(L \subseteq \Sigma^* \) define \(L^0 = \{\varepsilon\} \), and inductively for \(n \geq 0 \)

\(L^{n+1} = L^n \cdot L \). Language powers satisfy the usual laws of exponents — \(L^n \cdot L^m = L^{n+m} \).
Kleene Closure

In terms of these powers we define two other language operations. The Kleene closure (or star) of $L \subseteq \Sigma$ is

$$L^* = \bigcup_{n=0}^{\infty} L^n$$

The positive closure is

$$L^+ = \bigcup_{n=1}^{\infty} L^n$$

Listing Strings in Σ^*

If you write a program to list all the strings in Σ^* how can you print everyone without missing any?

- **Dictionary order:**
 - Eg., ε, 0, 00, 000, .., 0000001, .., 1, 10, 100, ..

- **Canonical Order:**
 - List the shortest strings first;
 - For the strings of the same length, list them in the dictionary order.

Countably Infinite Sets

- The size of a set is called the **cardinality** of the set.
- The cardinality of a finite set is the number of elements in the set, also called **size**.
- Two sets have the same cardinality if there is a one-to-one correspondence.
- A set is **countably infinite** if its elements can be enumerated one by one.
- The set N of natural numbers are countably infinite.
Countably Infinite Sets

- Theorem: A set is countable infinite iff it has the same cardinality as the set \mathbb{N} of natural numbers.
- The following sets are countably infinite:
 - The set of even numbers
 - Any infinite subset of \mathbb{N}
 - The set of all integers
 - $\{ a \}^*$
 - $\{ a, b \}^*$
 - For any alphabet Σ, Σ^*

Non-Countably Infinite Sets

- The set of binary strings with infinite length
- The set of real numbers in $[0, 1)$
- The power set of \mathbb{N}
- The set of all functions on \mathbb{N}

The “Language” of Regular Expressions

The regular expressions over an alphabet Σ comprise a collection of formal notations. Each notation represents a formal language.

- (Meta) Language of regular expressions:
 - Syntax: rules of formation
 - Semantics: the associated language $L \subseteq \Sigma^*$.

Regular Expression Syntax

Regular expressions involve the symbols from Σ plus several auxiliary symbols, and are defined inductively.

Basis case(s):
(a) \emptyset is a regular expression
(b) ϵ is a regular expression
(c) each $\lambda \in \Sigma$ is a regular expression

Inductive case(s):
If α and β are regular expressions, then so are:
(a) $(\alpha + \beta)$
(b) $(\alpha \cdot \beta)$
(c) (α^*)

Regular Expression Semantics

The meaning of each regular expression α is a language $\mu(\alpha) \subseteq \Sigma^*$ whose definition parallels the inductive definition of the syntax.

Basis case(s):
(a) $\mu(\emptyset) = \emptyset$
(b) $\mu(\epsilon) = \{\epsilon\}$
(c) $\mu(\lambda) = \{\lambda\}$

Inductive case(s):
If α and β are regular expressions, then:
(a) $\mu(\alpha + \beta) = \mu(\alpha) \cup \mu(\beta)$
(b) $\mu(\alpha \cdot \beta) = \mu(\alpha) \cdot \mu(\beta)$
(c) $\mu(\alpha^*) = (\mu(\alpha))^*$

Regular Languages

$L \subseteq \Sigma$ is a regular language if there exists a regular expression α so that $L = \mu(\alpha)$

Regular expressions α and β are equivalent, $\alpha = \beta$, provided that $\mu(\alpha) = \mu(\beta)$

To avoid excessive parentheses in regular expressions, we assign precedence to the operations: \ast highest, \cdot intermediate, and $+$ lowest; also, \cdot may be omitted. For instance, the regular expression (0^*1^*) is written 01^*.
Example 1.1.3 (h) — 0 *(10*10*)*
The language described by this regular expression contains the strings:
\(\epsilon, 0, 00, 000, \ldots \)
11, 110, 101, 1100, 1001, 1010, 11000, …
011, 0110, 0101, 01100, 01001, …
Informally, all binary strings with an even number of '1's.

Example 1.1.3 (g) — 00+11+101
This regular expression describes \{00, 11, 101\}.

Example 1.1.3 (i) — 0 *1*
The meaning in this case is the language \(\{\epsilon, 0, 1, 00, 01, 11, 000, 001, 011, 111, \ldots \} = \{0^{p+q} \mid p,q \geq 0\} \).
Briefly, and informally, all strings where '1' is followed by '1' or nothing.

The language described by this regular expression contains the strings:
\(\epsilon, 0, 00, 000, \ldots \)
11, 110, 101, 1100, 1001, 1010, 11000, …
011, 0110, 0101, 01100, 01001, …
Informally, all binary strings with an even number of '1's.

Theorem 1.1.1: For any regular expressions \(\alpha, \beta \) and \(\gamma \),
(i) \(\alpha + \beta = \beta + \alpha \),
(ii) \((\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \),
(iii) \(\emptyset + \alpha = \alpha + \emptyset = \alpha \),
(iv) \((\alpha \beta) \gamma = \alpha (\beta \gamma) \),
(v) \(\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma \),
(vi) \((\alpha + \beta) \gamma = \alpha \gamma + \beta \gamma \),
(vii) \(\epsilon \alpha = \alpha \epsilon = \alpha \),
(viii) \(\emptyset \alpha = \emptyset = \emptyset \),
(ix) \(\emptyset^* = \epsilon \),
(x) \((\alpha + \epsilon)^* = \alpha^* \),
(xi) \(\alpha (\beta \alpha)^* = (\alpha \beta)^* \alpha \),
(xii) \((\alpha^*)^* = \alpha^* \),
(xiii) \((\alpha^+)^* = (\alpha + \beta)^* \),
(xiv) \((\alpha^*)^* = \epsilon + (\alpha + \beta)^* \).

Assertion: The regular languages are the smallest family of languages containing the finite languages and closed under union, concatenation, and star.
- each finite language is regular
- regular languages are “closed under” union, concatenation, and star
- any family of languages that contains the finite languages and is closed under union, concatenation and star also contains all the regular languages

Assertion: A regular expression denotes an infinite language only if it includes *, and \(\mu(\alpha^*) \) is infinite unless \(\alpha = \emptyset \) or \(\alpha = \epsilon \).
Language Transformations
Let \(\Sigma \) and \(\Delta \) be alphabets. A function \(h: \Sigma \rightarrow \Delta^* \) is a homomorphism.

A homomorphism may be extended uniquely as a function \(h: \Sigma^* \rightarrow \Delta^* \):
\[
h(\varepsilon) = \varepsilon, \text{ and } h(x \lambda) = h(x) h(\lambda) \text{ for all } x \in \Sigma^* \text{ and } \lambda \in \Sigma.
\]

Finally, homomorphism may be applied to languages, \(h: p(\Sigma^*) \rightarrow p(\Delta^*) \), by the element-wise extension (\(p(S) = \text{power set of } S \)):
\[
h(L) = \{h(x) | x \in L\} \text{ for each } L \subseteq \Sigma^*.
\]

Let \(\Sigma \) and \(\Delta \) be alphabets. A function \(s: \Sigma \rightarrow p(\Delta^*) \) is a substitution (i.e., each letter of \(\Sigma \) is associated with a language over \(\Delta \)). A substitution is called regular if each of the languages \(s(\lambda) \) is regular.

A substitution may be also extended as a function \(s: \Sigma^* \rightarrow p(\Delta^*) \) as inductively defined by \(s(\varepsilon) = \{\varepsilon\} \), and \(s(x \lambda) = s(x) s(\lambda) \) for all \(x \in \Sigma^* \) and \(\lambda \in \Sigma \).

Finally, substitutions may be applied to languages, \(s: p(\Sigma^*) \rightarrow p(\Delta^*) \), by element-wise extension:
\[
s(L) = \bigcup_{x \in L} s(x).
\]

Every homomorphism \(h \) can be regarded as a substitution \(h' \) where if \(h(\lambda) = w \), \(h'(\lambda) = \{w\} \).

Homeomorphisms map a letter to one string.

Substitutions map a letter to set of strings.

The latter may be regarded as “non-deterministic” homomorphisms.

Every homomorphism has a finite description, but a substitution need not have a finite description. If the languages associated with letters are infinite, a finite description of the substitution may be impossible.
Theorem 1.1.3: For each regular language \(R \subseteq \Sigma^* \) and each regular substitution \(s \), \(s(R) \) is regular.

Corollary 1.1.4: For each regular language \(R \subseteq \Sigma^* \) and each homomorphism \(h \), \(h(R) \) is regular.

Closure Properties of Languages

A set of languages is said to be closed for an operation if the result of the operation applying to members of the set is also in the set.

Theorem: the set of regular languages is closed under union, (set) concatenation, Kleene closure (star), regular substitution, and homomorphism.