Problem 4.11 (6 pts)
Let $INFINITE_{PDA} = \{(M) \mid M$ is a PDA and $L(M)$ is an infinite language}. Show $INFINITE_{PDA}$ is decidable.

We must construct a TM A that decides $INFINITE_{PDA}$.
$A = \text{On input } \langle M \rangle \text{ where } M \text{ is a PDA:}$
1. Construct an equivalent CFG G from M.
2. Remove a variable X (and the productions containing X) from G if it is not the case that $S \Rightarrow^* uXv \Rightarrow^* w$, where w is in $L(G)$.
3. Accept, $\langle M \rangle$ if there exists a derivation of $X \Rightarrow^+ uXv$ for some $uv \in \Sigma^+$. Otherwise, reject $\langle M \rangle$.

Since all steps in this machine will stop, $INFINITE_{PDA}$ is decidable.

Problem 4.13 (6 pts)
Let $A = \{(R,S) \mid R$ and S are regular expressions and $L(R) \subseteq L(S)\}$. Show A is decidable.

We must construct a TM M that decides A.
$M = \text{On input } \langle R,S \rangle \text{ where } R$ and S are regular expressions:
1. Construct a DFA X such that $L(X) = L(S) \cap L(R)$
2. Run E_{DFA} on input $\langle X \rangle$. Accept if it accepts and reject if it rejects.

Since E_{DFA} is decidable, M is decidable. This machine works because
$L(R) \subseteq L(S) \iff L(S) \cap L(R) = \emptyset$.

Problem 4.17 (6 pts)
Prove that EQ_{DFA} is decidable by testing the two DFAs on all strings up to a certain size. Calculate a size that works.

Let $EQ_{DFA} = \{(A,B) \mid A, B \text{ are DFAs and } L(A) = L(B)\}$. Let M be a TM that decides EQ_{DFA}.
$M = \text{On input } \langle A,B \rangle$:
1. Check that input $\langle A,B \rangle$ includes 2 DFAs A and B with the same alphabet. If not, reject.
2. Calculate $n = |Q_A|$ and $m = |Q_B|$ (the numbers of states in the two DFAs).
3. Enumerate all strings in Σ up to length $n \times m$, and for each such string w:
 a. Run A on w.
 b. Run B on w.
 c. If the result of the two executions is different, reject. Otherwise, continue.
4. If all length up to $n \times m$ strings explored, accept.

The reason we can check only the length up to $n \times m$ strings is because if the two DFAs do not accept the same language, then there must be a string w of size $|w| \leq n \times m$ for which $A(w) \neq B(w)$.

Assume by contradiction that the shortest string that yields a different output of A and B is w' and $|w'| = l > nm$, then there is a sequence of states $a_0, a_1, \ldots, a_l \in Q_A$ and $b_0, b_1, \ldots, b_l \in Q_B$ that describe the transitions for w' in A and B respectively. Since $l > nm$, putting those sequences side by side, there must be some repetition of a pair of sequences a_i, b_i and a_j, b_j such that $a_i = a_j, b_i = b_j, i < j$.

Therefore, we can remove all subsequences in between leaving only a_i, b_i and by that get a smaller string w'' that A, B will act the same over exactly as over w', thus contradicting the assumption that w' is the shortest such that $A(w')
eq B(w')$. Hence, checking all strings up to size nm is sufficient.
Problem 4.21 (6 pts)
Let \(S = \{ \langle M \rangle \mid M \text{ is a DFA that accepts } \omega^R \text{ whenever it accepts } \omega \} \). Show that \(S \) is decidable.

We must construct a TM \(M \) that decides \(S \).

\(M = \) “On input \(\langle M \rangle \) where \(M \) is a DFA:

1. Construct DFA \(M^R \) that recognizes \(\{ \omega \mid \omega^R \in L(M) \} \) (see #)
2. Run \(EQ_{DFA} \) on the input \(\langle M, M^R \rangle \). If it accepts, then accept. Otherwise, reject.

This machine works by accepting only DFAs which accept a word and its reverse.

(#) We can construct the DFA \(M^R \) by constructing an NFA from \(M \) by reversing all transitions, making the previous start state the only accept state and adding a new start state with \(\epsilon \) transitions to all previous accepting states. Then a DFA can be constructed from that NFA.

Problem 4.28 (6 pts)
Let \(C = \{ \langle G, x \rangle \mid G \text{ is a CFG, } x \text{ is a substring of some } y \in L(G) \} \). Show that \(C \) is decidable.

We must construct a TM \(M \) that decides \(C \).

\(M = \) “On input \(\langle G, x \rangle \) where \(G \) is a CFG and \(x \) is a string:

1. Construct DFA \(A \) that recognizes the language of the regular expression \(\Sigma^* \cup \{x\} \cup \Sigma^* \)
2. Construct CFG \(F \) for the context-free language \(L(G) \cap L(A) \)
3. Run the TM \(EQ_{CFG} \) on \(L(F) \). If it accepts, reject. Otherwise, accept.”

This machine will work because we know that the intersection of a CFL and a regular language is a CFL; therefore, \(L(F) \) will be a CFL. Additionally, \(L(A) \) is the language of all strings with \(x \) as their substring and is a regular language. Hence, if \(G \) generates some string \(w \) with \(x \) as its substring, the intersection, \(L(F) \), should be nonempty.