Problem 3.2 (b,d) (3 pts each)
Part b:
Use TM M_1 from Example 3.9 on input: "1#1"
$q_11#1 \rightarrow xq_3#1 \rightarrow x\#q_51\rightarrow xq_6\#x \rightarrow q_7x\#x \rightarrow xq_1\#x \rightarrow x\#q_8x \rightarrow x\#xq_8 \uparrow \rightarrow x\#x \uparrow q_{accept}$

Part d:
Use TM M_1 from Example 3.9 on input: "10#11"
$q_{1}10#11 \rightarrow xq_{3}0#11 \rightarrow x0q_{3}#11 \rightarrow x0q_{5}11 \rightarrow x0q_{6}#x1 \rightarrow x0q_{6}#x1 \rightarrow xq_{7}0#x1 \rightarrow q_{7}x0#x1 \rightarrow xq_{1}0#x1 \rightarrow xxq_{2}#x1 \rightarrow xx\#q_{4}x1 \rightarrow xx\#xq_{4}1 \rightarrow xx\#x1 q_{reject}$

Problem 3.8 (b,c) (4 pts each)
(describe how the tape is changed and how the head moves)
Part b: $\{w \mid w$ contains twice as many 0s as 1s\}
$M = \text{"On input } w:\$
1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1s are found, go to stage 5. Otherwise move the head back to the start of the tape.
2. Scan the tape and mark the first 0 that has not been marked. If no unmarked 0 remains, then reject.
3. Scan the tape and mark the next 0 that is unmarked. If no unmarked 0 remains, then reject.
4. Move the head back to the front of the tape and return to stage 1.
5. Move the head back to the start and scan the tape to see if any 0 remains unmarked. If there is an unmarked 0 reject, otherwise accept.”

Part c: $\{w \mid w$ does not contain twice as many 0s as 1s\}
$M = \text{"On input } w:\$
1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1s are found, go to stage 5. Otherwise move the head back to the start of the tape.
2. Scan the tape and mark the first 0 that has not been marked. If no unmarked 0 remains, then accept.
3. Scan the tape and mark the next 0 that is unmarked. If no unmarked 0 remains, then accept.
4. Move the head back to the front of the tape and return to stage 1.
5. Move the head back to the start and scan the tape to see if any 0 remains unmarked. If there is an unmarked 0 accept, otherwise reject.”

Problem 3.15 (b,d) (4 pts each)
Show the collection of decidable languages is closed under:
Part b: concatenation
For any two decidable languages L_1 & L_2 let M_1 & M_2 be the Turing machines that decide them.
Construct the TM M that decides the concatenation of L_1 and L_2.
$M = \text{"On input } w:\$
1. Let $i = 0$;
2. Let x be the prefix of w with i symbols and y be the rest of w, i.e., $w = xy$:
3. Run M_1 on x. If it rejects then go to stage 5. Otherwise if it accepts, then continue.
4. Run M_2 on y. If it accepts, then accept.
5. Let $i = i+1$; if $i>|w|$ then reject. Otherwise, go to stage 2.”
If there exists a way to split the input w into two substrings where M_1 accepts the first part and M_2 accepts the second part, w will belong to the concatenation of L_1 & L_2 and M will accept w after a finite number of steps.

Part d: complementation

For any decidable language L, let M_1 be the Turing machine that decides it. Construct the TM M that decides the complement of L.

$M = \text{"On input } w:\$

1. Run M_1 on w. If M_1 accepts then reject; if M_1 rejects then accept.

Since M does the opposite of whatever M_1 does, M decides the complement of L.

Problem 3.16 (c,d) (4 pts each)

Show the collection of Turing-recognizable languages is close under:

Part c: star

For any Turing-recognizable language L, let M_1 be the TM that recognizes it. Construct TM M that recognizes the start of L.

$M = \text{"On input } w:\$

1. If $w = \epsilon$, run M_1 on w. If M_1 accepts, accept.
2. Nondeterministically split w into non-empty pieces so that $w = w_1 w_2 w_3 \ldots w_n$.
3. Run M_1 on w_i for all i. If M_1 accepts all pieces, then accept. If it halts on any and rejects, then reject.”

If there is a way to split w into substrings such that M_1 accepts all the substrings, w must belong to the star of L and M will accept w after a finite number of steps.

Part d: intersection

For any two Turing-recognizable languages L_1 and L_2, let M_1 and M_2 be the TMs that recognize them. Construct TM M that recognizes the intersection of L_1 and L_2.

$M = \text{"On input } w:\$

1. Run M_1 on w. If it rejects, then reject. Otherwise continue.
2. Run M_2 on w. If it rejects, then reject. If it accepts, then accept.

If both M_1 and M_2 accept input w, w belongs to the intersection of L_1 and L_2 and M will accept it after a finite number of steps.