How to Prove NP-Completeness

- A problem B is NP-complete if
 - (membership) $B \in \text{NP}$
 - (NP-hard) For all $A \in \text{NP}$, $A \leq_P B$

Theorems

- SAT is NP-complete.
- If B is NP-complete and $B \leq_P C$ then C is NP-hard.
- SAT $\leq_P 3\text{SAT}$.
- $3\text{SAT} \leq_P \text{CLIQUE}$.

Other NP-complete Languages

- VERTEX-COVER is in NP.
- VERTEX-COVER is in NP-hard.
 - Proof1: Using graph properties.
 - Proof2: Reduce 3SAT to VERTEX-COVER.

To show that C is NP-complete, we provide a polynomial time reduction from 3SAT to C.

- $\text{VERTEX-COVER} = \{ \langle G, k \rangle \mid G$ is an undirected graph that has a k-node vertex cover $\}$.
Proof 1: VERTEX-COVER is NP-hard

Given a graph \(G = (V, E) \), for any \(X \in V \),

- \(X \) is a vertex-cover iff \(V - X \) is an independent set of \(G \).
- \(X \) is a clique of \(G \) iff \(X \) is an independent set of \(\overline{G} \),
 which is the complement of \(G \).

NP-hardness proof:

1. \(\text{CLIQUE} \leq_p \text{INDEPENDENT}: f(\langle G, k \rangle) = \langle \overline{G}, k \rangle \).
2. \(\text{INDEPENDENT} \leq_p \text{VERTEX-COVER}: f(\langle G, k \rangle) = \langle G, |V| - k \rangle \).

Proof 2: VERTEX-COVER is NP-hard

Theorem 7.44 3SAT \(\leq_p \) VERTEX-COVER.

- \(f(\Phi) = \langle G, m + 2n \rangle \), where \(\Phi \) is a set of \(n \) clauses on \(m \) variables.
- \(G = (V, E) \), where
 \(V = \{ x_i, \overline{x}_i | 1 \leq i \leq m \} \cup \{ l_{i,j} | 1 \leq i \leq 3, 1 \leq j \leq n \} \) and
- \(E = \{(l_{1,j}, l_{2,j}), (l_{1,j}, l_{3,j}), (l_{2,j}, l_{3,j}) | 1 \leq j \leq l \} \cup \{(x_i, l_{j,k}) | 1 \leq i \leq m, 1 \leq j \leq 3, 1 \leq k \leq n, \)
 the \(j^{th} \) literal of clause \(k \) is \(x_i \}).

NP Completeness Proofs

Theorem 7.46 HAM-PATH is NP-complete.

To show that \(C \) is NP-complete, we can provide a polynomial time reduction from 3SAT to \(C \).

Theorem 7.55 UHAM-PATH is NP-complete.

Other NP-complete Languages

Suppose \(G \) is a directed graph:

- \(\text{HAM-PATH} = \{ \langle G, s, t \rangle | G \ \text{has a Hamiltonian path from } s \ \text{to } t \} \).
- \(\text{HAM-PATH}_0 = \{ \langle G \rangle | G \ \text{has a Hamiltonian path} \} \).
- \(\text{HAM-CYCLE} = \{ \langle G \rangle | G \ \text{has a Hamiltonian cycle} \} \).

\(G \) can be also an undirected graph (UHAM-PATH, UHAM-PATH0, UHAM-CYLCE).
SUBSET-SUM is NP-complete

Theorem 7.56 $3SAT \leq_P \text{SUBSET-SUM}$.

$f(\Phi) = \langle X, t \rangle$, where Φ is a set of k clauses on l variables, X contains $2(k+l)$ numbers of upto $k+l$ digits, and t is a $(k+l)$-digit number whose first l digits are 1’s and the rest k digits are 3’s.

SUBSET-SUM

$\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{x_1, ..., x_k\} \text{ and for some } \{y_1, ..., y_t\} \subseteq \{x_1, ..., x_k\} \text{ we have } \sum y_i = t \}$.

PARTITION

$\text{PARTITION} = \{ \langle S \rangle \mid S = \{x_1, ..., x_n\} \text{ and there exists a subset } Y \subset S \text{ such that } \sum(Y) = \sum(S)/2, \} \text{, where } \sum(X) = \sum_{x \in X} x$.

Theorem PARTITION is NP-complete.

BIN-PACKING

$\text{BIN-PACKING} = \{ \langle S, t \rangle \mid S = \{x_1, ..., x_k \mid 0 \leq x_i \leq 1 \} \text{ and } S \text{ can be partitioned into } t \text{ subsets, } S = S_1 \cup S_2 \cup \cdots \cup S_t \text{ such that for each } S_i, \sum(S_i) \leq 1 \}$.

Theorem BIN-PACKING is NP-complete.

Theory of Computation – p.10/12