CS:4330 Theory of Computation Midterm Exam (100 points)

1. (35 points) Decide if L₁ is decidable or not with a formal proof. $L_1 = \{ \langle M \rangle | M \text{ is a standard Turing machine, } M \text{ accepts some } w \in \Sigma^* \text{ with more than one billion (i.e., 10¹²) steps. } \}$

Answer: L₁ is undecidable. Suppose L₁ is decidable and there is a TM decider R for L₁: For any TM M, $R(\langle M \rangle) =$ accept iff M accepts some $w \in \Sigma^*$ with more than one billion steps. We use R to construct another decider S for E_{TM}, the emptiness problem of Turing machines, as follows:

 $S = "On \langle M \rangle$, a TM

1. Construct $\langle M' \rangle$ from $\langle M \rangle$:

M' = "On x, an input string

- a. Run 10^{12} useless steps;
- b. Simulate M on x and return the result of the simulation."
- 2. If $R(\langle M' \rangle)$ accepts, reject; otherwise accept."

Obviously, L(M') = L(M) and M' takes more than 10^{12} steps to accept any x. If R(M') returns "accept", it means $L(M') \neq \{\}$, thus $L(M) \neq \{\}$. If R(M') returns "reject", then $L(M') = L(M) = \{\}$. So S is indeed a decider for E_{TM} . This completes the proof that E_{TM} is reduced to L_1 .

2. (35 points) Decide if L_2 is decidable or not with a formal proof. $L_2 = \{ \langle M \rangle \mid M \text{ is a standard Turing machine, } M \text{ accepts no more than one billion words. } \}$

Answer: L₂ is undecidable. Suppose L₂ is decidable and there is a TM decider R for L₂: For any TM M, $R(\langle M \rangle) = \text{accept iff } |L(M)| \le 10^{12}$. We may use R to construct a decider for A_{TM}, that is, we reduce A_{TM} to L₂:

 $S = "On \langle M, w \rangle$, M is a TM and w is a string

1. Construct $\langle M' \rangle$ from $\langle M, w \rangle$:

- M' = "On x, an input string
 - a. Simulate M on w;
 - b. If M accepts w, accept."
- 2. If $R(\langle M' \rangle)$ accepts, reject; otherwise accept."

Note that $L(M') = \{\}$ if $w \notin L(M)$; $L(M') = \Sigma^*$ if $w \in L(M)$. If R(M') returns "accept", it means $L(M') = \{\}$, thus $w \notin L(M)$. If R(M') returns "reject", then $L(M') = \Sigma^*$ and $w \in L(M)$. So S is indeed a decider for A_{TM} . This completes the proof that A_{TM} is reduced to L_1 .

Note that L_2 is the encoding of a nontrivial property of Turing recognizable languages. By Rice's Theorem, L_2 is not decidable.

3. (30 points) Two known NP-complete problems are Coloring and CNF-SAT:

Coloring = { $\langle G, k \rangle$ | vertices of graph G can be colored by k colors so that the two ends of each edge in G have different colors. }

CNF-SAT = { $\langle \phi \rangle$ | Boolean formula ϕ is in conjunctive normal form and is satisfiable. }

Show with proof details that Coloring can be reduced to CNF-SAT by polynomial reduction.

Answer: We need to provide a polynomial time function f which takes $\langle G, k \rangle$ and produce a Boolean formula ϕ such that $\langle G, k \rangle \in \text{Coloring iff } \phi$ is satisfiable. Suppose G = (V, E), where $V = \{v_1, v_2, \dots, v_n\}$. We use k*n Boolean variables: $p_{i,j}$, $1 \le i \le n$, $1 \le j \le k$. The meaning of $p_{i,j}$ is that $p_{i,j}$ is true iff v_i is assigned color j. Then $\phi = \phi_{\text{unique}} \land \phi_{\text{consistent}}$

 $\begin{aligned} & \phi_{unique}: \text{ Every vertex receives a unique color:} \\ & \phi_{unique} = \wedge_{1 \leq i \leq n} \left(\left(p_{i,1} \lor p_{i,2} \lor \ldots \lor p_{i,k} \right) \land_{1 \leq a < b \leq k} \left(\neg p_{i,a} \lor \neg p_{i,b} \right) \right) \end{aligned}$

 $\phi_{\text{consistent}}$: Every edge has different colors at the two ends:

 $\phi_{\text{consistent}} = \bigwedge_{1 \leq j \leq k, \ (x, y) \in E} (\neg p_{x,j} \lor \neg p_{y,j}).$

Now we claim that iff ϕ is satisfiable G can be colored consistently by k colors.

Suppose G can be colored consistently by k colors and for any i, vertex v_i receives color j. We then assign true to $p_{i,j}$ and false to $p_{i,j'}$ for j' \neq j. Obviously, ϕ_{unique} is true under this assignment. $\phi_{consistent}$ is also true under this assignment, because for every edge $(x, y) \in E$, x and y receives different colors, so $p_{x,j}$ and $p_{y,j}$ cannot be true at the same time. Thus, ϕ is satisfiable because this assignment makes ϕ to be true.

On the other hand, if ϕ is satisfiable, then there is an assignment which makes ϕ to be true. By ϕ_{unique} , for any i, $p_{i,j}$ is true for a unique j. So we let v_i receives color j. By $\phi_{consistent}$, the two ends of every edges receive different colors. So this coloring is consistent.

Let $f(\langle G, k \rangle) = \phi$, then f can be done in polynomial time of n, where n = |V|. At first, $|E| = O(n^2)$ and k < n; otherwise the solution is trivial. ϕ contains kn variables. The number of variables appearing in ϕ_{unique} is $n(k+k(k-1)/2) = O(n^3)$. The number of variables appearing in $\phi_{consistent}$ is $2k|E| = O(n^3)$. So the size of ϕ is $O(n^3)$, and ϕ can be constructed in $O(n^3)$ time. Thus, f is a polynomial time reduction.