Sample Solution Keys to Homework 9
5.17;5.18;5.22; 5.23; 5.32; 5.34, 5.35.

Problem 5.17
Let (B, T) be an instance of PCP, where B = [bs, by, ..., bn] and T = [t1, 12, ..., tn]. If the alphabet contains a
single symbol, say 1, there are only two cases where (S, T) has no solutions:

Case 1: | bi| > |bi| for 1<i<n

Case 2: |si| > |ti| for 1<i<n
For other cases, either we have |bi|= |ti| for some i and this is a trivial solution, or there exist i and j
such that |bi|=a > |ti|=b and |bj|=c < |tj|=d, a solution can be found by choosing x copies of (bj, ti) and
y copies of (bj, t;), wherex=c—-dandy=a-bh.

Problem 5.18
We encode every symbol of X by a binary string of the same length, then the original PCP has a
solution iff the binary PCP has a solution.

Problem 5.22

If A'is Turing recognizable, then there exists a Turing machine M such that L(M) = A. The mapping
reduction f is defined by f(w) = <M,w>, then w €A iff <M,w>eAmm.

If A <m Atm, then A is Turing recognizable by Theorem 5.28 because Atwm is Turing recognizable.

Problem 5.23
Show that A is decidable iff A <,,, 0*1".
(=) IfA <, 0°1%, then A is decidable because 0*1* is a decidable language by Theorem 5.22.
(&) If Ais decidable, then there exists some TM R that decides A. That is, R would receive an input w
and accept if wisin A, reject if wis not in A. To show A <,,, 0*1%, we design a TM Q that does the
following: On input w, run R on w. If R accepts, outputs 01; otherwise, outputs 10. It is easy to check
that:

w € A & outputof Q € 0°1*
Thus, we obtain a mapping reduction of A to 0*1".

Problem 5.32
(a) If OVERLAPcG is decidable and S is its decider, then we may use S to solve PCP. For any instance
(B, T) of PCP, where B = [by, by, ..., bn] and T = [t3, 12, ..., tn], we define two CFG G and H as
follows:
G=({b}, %, B, {B—>sBi|1<i<n} U{B—>sSi)and H=({T}, =, T, {T > tTi | 1<i<n } U{T >
tiSi}), where X' = 2 U {5, 1, 2, ..., n }. Then L(G) N L(H) # & iff PCP has a solution, because the
strings in L(G) M L(H) are the solutions of PCP.



(b) If PREFIX-FREEcrc is decidable and S is its decider, we may use S to solve PCP. Let G = ({ S, T, B},
%, S, {S >T|B} UP) be the CFG defined in Problem 5.21, replacing S —>T|B by S — T#|B##, we
obtain G’ = ({S, T, B}, ZU{#}, S, {S > T#|B##} UP ), then G’ is prefix-free iff PCP has no solution.
That is, PCP has a solution iff there exists w such that T =* w and B =* w, iff in G’, we have
S =TH=* wH and S =B##="* wH#, that is, S is not prefix-free because w# is a prefix of wi#.

Problem 5.34
Let X = { <M, w> | M is a single-tape TM that never modifies the portion of the tape that
contains the input w }
We will show that Atm <m X. The reduction f is computed as follows:
f="0Oninput <M, w>, where M isa TM
1. Construct Mo as follows:
Mo = “On input x
1. Move the tape head past x and write the character $ and w
2. Simulate on w in the space after S;
3. If M accepts w, move to the left of $ and write anything over x”
2. Output <Mo, w>"

Claim: <M, w>e Atw iff <Mo, w > € X.

Proof: If M accepts w, then at line 3 of Mo, Mo modifies the input string. If M rejects or loops on w, then
MO will reject or loop but never change the input string.

Since Atm is undecidable and Atm <m X, X cannot be decidable.

Problem 5.35
Say that a variable A in CFG G is necessary if it appears in every derivation of some stringw € G. Let
NECESSARYr; = {(G, A) | A is a necessary variable in G}.

a. Show that NECESSARY g is Turing-recognizable.
Let M be a TM that behaves as follows:
On input (G, A):
1. Construct CFG G\A by removing the nonterminal A and any production that mentions it from G
2. Enumerating strings w generated by G. For each such string, simulate a decider for CFG A to
test whether w is generated by G\A. If w is not generated by G\A then accept, otherwise
continue the search.
3. On other input, reject.

The language L(G\A) consists of all and only those string w € L(G) that have derivations that do not
use A. If w € L(G) and wis not in L(G\A), then A is necessary for G to generate w € L(G). Eventually,



M will identify such a w and will accept. On the other hand, if A is not necessary for G, then L(G) =
L(G\A) and M will loop. Thus, M recognizes NECESSARY .

Note that it is not possible to prove this part by enumerating all strings w € L(G) and checking all
derivations of each such string to see whether or not 4 is used, because in general a stringw € L(G)
can have infinitely many derivations. So the checking procedure might never terminate.

b. Show that NECESSARY g is undecidable.
We will show ALL¢pg <;u NECESSARY k.
The reduction f is computed as follows:
On input (G):

1. Construct G, by adding to G a new nonterminal 4, together with productions: S = 4,4 — ¢,

and A - aA foreacha € .

2. Output (Gg, A).
Note that the grammar G, constructed by f is always such that L(Gy) = Z*. Thus, if L(G) = X*, then A
is not necessary for G, because every string w € X* can already be derived from G, hence also from G,
by a derivation not using A. Also, if L(G) # X*, then A is necessary for G,. Because if w € L(G) the w
can only be derived from G, by a derivation that uses A. To summarize, if (G) € ALLcpg, then (G,, A) &
NECESSARY ¢, and if (G) & ALLcpg, then (Gy, A) € NECESSARY ;. Hence, f is a reduction of
ALLcpq to NECESSARY cpg, as claimed.




