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5.17; 5.18; 5.22; 5.23; 5.32; 5.34; 5.35. 
 
Problem 5.17  
Let (B, T) be an instance of PCP, where B = [b1, b2, …, bn] and T = [t1, t2, …, tn]. If the alphabet contains a 
single symbol, say 1, there are only two cases where (S, T) has no solutions: 

Case 1: |bi| > |bi| for 1≤i≤n 
Case 2: |si| > |ti| for 1≤i≤n 

For other cases, either we have |bi|= |ti| for some i and this is a trivial solution,  or there exist i and j 
such that |bi|=a > |ti|=b and |bj|=c < |tj|=d, a solution can be found by choosing x copies of (bi, ti) and 
y copies of (bj, tj), where x = c – d and y = a – b.  
 
 
Problem 5.18  
We encode every symbol of Σ by a binary string of the same length, then the original PCP has a 
solution iff the binary PCP has a solution. 
 
 
Problem 5.22  
If A is Turing recognizable, then there exists a Turing machine M such that L(M) = A. The mapping 
reduction f is defined by f(w) = <M,w>, then w ∈A iff <M,w>∈ATM. 
If A ≤m ATM, then A is Turing recognizable by Theorem 5.28 because ATM is Turing recognizable. 
 
 
Problem 5.23  
Show that 𝐴𝐴 is decidable iff 𝐴𝐴 ≤𝑚𝑚 0∗1∗. 
(⇒)  If 𝐴𝐴 ≤𝑚𝑚 0∗1∗, then 𝐴𝐴 is decidable because 0∗1∗ is a decidable language by Theorem 5.22. 
(⇐)  If 𝐴𝐴 is decidable, then there exists some TM 𝑅𝑅 that decides 𝐴𝐴.  That is, 𝑅𝑅 would receive an input 𝑤𝑤 
and accept if 𝑤𝑤 is in 𝐴𝐴, reject if 𝑤𝑤 is not in 𝐴𝐴.  To show 𝐴𝐴 ≤𝑚𝑚 0∗1∗, we design a TM 𝑄𝑄 that does the 
following: On input 𝑤𝑤, run 𝑅𝑅 on 𝑤𝑤. If 𝑅𝑅 accepts, outputs 01; otherwise, outputs 10.  It is easy to check 
that: 

𝑤𝑤 ∈ 𝐴𝐴 ⇔ output of 𝑄𝑄 ∈ 0∗1∗ 
Thus, we obtain a mapping reduction of 𝐴𝐴 to 0∗1∗. 
 
 
Problem 5.32 

(a) If OVERLAPCFG is decidable and S is its decider, then we may use S to solve PCP. For any instance 
(B, T) of PCP, where B = [b1, b2, …, bn] and T = [t1, t2, …, tn], we define two CFG G and H as 
follows: 
G = ({b}, Σ’, B, { B → siBi | 1≤i≤n }  ∪ { B → si$i}) and H = ({T}, Σ’, T, { T → tiTi | 1≤i≤n }  ∪ { T → 
ti$i}), where Σ’ =  Σ ∪ { $, 1, 2, …, n }. Then L(G) ∩ L(H) ≠ ∅ iff PCP has a solution, because the 
strings in L(G) ∩ L(H) are the solutions of PCP. 
 



(b) If PREFIX-FREECFG is decidable and S is its decider, we may use S to solve PCP. Let G = ({ S, T, B}, 
Σ, S, {S →T|B} ∪P) be the CFG defined in Problem 5.21, replacing S →T|B by S → T#|B##, we 
obtain G’ = ({S, T, B}, Σ∪{#}, S, {S →T#|B##} ∪P ), then G’ is prefix-free iff PCP has no solution. 
That is,  PCP has a solution iff there exists w such that T ⇒* w and B ⇒* w, iff in G’, we have  
S ⇒T#⇒* w# and S ⇒B##⇒* w##, that is, S is not prefix-free because  w# is a prefix of w##. 
 
 

Problem 5.34 
Let X = { <M, w> | M is a single-tape TM that never modifies the portion of the tape that 
contains the input w } 
We will show that ATM  ≤m X. The reduction f is computed as follows: 
  f = "On input <M, w>, where M is a TM 

1. Construct M0 as follows: 
M0 = “On input x 

1. Move the tape head past x and write the character $ and w 
2. Simulate on w in the space after $; 
3. If M accepts w, move to the left of $ and write anything over x” 

      2. Output <M0, w>" 
 
Claim: <M, w>∈ ATM iff <M0, w > ∈ X. 
 
Proof: If M accepts w, then at line 3 of M0, M0 modifies the input string. If M rejects or loops on w, then 
M0 will reject or loop but never change the input string. 
 
Since ATM is undecidable and ATM  ≤m X, X cannot be decidable. 
 
 
Problem 5.35 
Say that a variable 𝐴𝐴 in CFG 𝐺𝐺 is necessary if it appears in every derivation of some string 𝑤𝑤 ∈ 𝐺𝐺. Let 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 = {〈𝐺𝐺,𝐴𝐴〉 | 𝐴𝐴 is a necessary variable in 𝐺𝐺}. 
 

a. Show that 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 is Turing-recognizable. 
Let 𝑀𝑀 be a TM that behaves as follows: 
On input 〈𝐺𝐺,𝐴𝐴〉: 

1. Construct CFG 𝐺𝐺\𝐴𝐴 by removing the nonterminal 𝐴𝐴 and any production that mentions it from 𝐺𝐺 
2. Enumerating strings 𝑤𝑤 generated by 𝐺𝐺. For each such string, simulate a decider for CFG 𝐴𝐴 to 

test whether 𝑤𝑤 is generated by 𝐺𝐺\𝐴𝐴. If 𝑤𝑤 is not generated by 𝐺𝐺\𝐴𝐴 then accept, otherwise 
continue the search. 

3. On other input, reject. 
 
The language 𝐿𝐿(𝐺𝐺\𝐴𝐴) consists of all and only those string 𝑤𝑤 ∈ 𝐿𝐿(𝐺𝐺) that have derivations that do not 
use 𝐴𝐴. If 𝑤𝑤 ∈ 𝐿𝐿(𝐺𝐺) and w is not in 𝐿𝐿(𝐺𝐺\𝐴𝐴), then 𝐴𝐴 is necessary for 𝐺𝐺 to generate 𝑤𝑤 ∈ 𝐿𝐿(𝐺𝐺). Eventually, 



𝑀𝑀 will identify such a 𝑤𝑤 and will accept. On the other hand, if 𝐴𝐴 is not necessary for 𝐺𝐺, then 𝐿𝐿(𝐺𝐺) =
𝐿𝐿(𝐺𝐺\𝐴𝐴) and 𝑀𝑀 will loop. Thus, 𝑀𝑀 recognizes 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶. 
 
Note that it is not possible to prove this part by enumerating all strings 𝑤𝑤 ∈ 𝐿𝐿(𝐺𝐺) and checking all 
derivations of each such string to see whether or not 𝐴𝐴 is used, because in general a string 𝑤𝑤 ∈ 𝐿𝐿(𝐺𝐺) 
can have infinitely many derivations. So the checking procedure might never terminate. 
 

b.  Show that 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 is undecidable. 
We will show 𝐴𝐴𝐴𝐴𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ≤𝑚𝑚 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶���������������������.  
The reduction 𝑓𝑓 is computed as follows: 
On input 〈𝐺𝐺〉: 

1. Construct 𝐺𝐺0 by adding to 𝐺𝐺 a new nonterminal 𝐴𝐴, together with productions: 𝑆𝑆 → 𝐴𝐴,𝐴𝐴 → 𝜖𝜖, 
and 𝐴𝐴 → 𝑎𝑎𝑎𝑎 for each 𝑎𝑎 ∈ Σ. 

2. Output 〈𝐺𝐺0,𝐴𝐴〉. 
Note that the grammar 𝐺𝐺0 constructed by 𝑓𝑓 is always such that 𝐿𝐿(𝐺𝐺0) = Σ∗. Thus, if 𝐿𝐿(𝐺𝐺) = Σ∗, then 𝐴𝐴 
is not necessary for 𝐺𝐺0, because every string 𝑤𝑤 ∈ Σ∗ can already be derived from 𝐺𝐺, hence also from 𝐺𝐺0 
by a derivation not using 𝐴𝐴. Also, if 𝐿𝐿(𝐺𝐺) ≠ Σ∗, then 𝐴𝐴 is necessary for 𝐺𝐺0. Because if 𝑤𝑤 ∉ 𝐿𝐿(𝐺𝐺) the 𝑤𝑤 
can only be derived from 𝐺𝐺0 by a derivation that uses 𝐴𝐴. To summarize, if 〈𝐺𝐺〉 ∈ 𝐴𝐴𝐴𝐴𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 , then 〈𝐺𝐺0,𝐴𝐴〉 ∉
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶, and if 〈𝐺𝐺〉 ∉ 𝐴𝐴𝐴𝐴𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 , then 〈𝐺𝐺0,𝐴𝐴〉 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶. Hence, 𝑓𝑓 is a reduction of 
𝐴𝐴𝐴𝐴𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶  to 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶���������������������, as claimed. 
 


