CS 4330, Homework 8 Sample Solutions (Fall 2020)

Problem 4.31

We are given a CFG G, so we can construct a grammar G' that has all the rules in G. However, there are some exceptions such that we want to delete rules that include A on the left hand side. Also, we want to replace all A's on the right hand side with a new symbol, e.g., a that is not a symbol in G.

If there exists a symbol a in any string in L(G'), that means that A was used for some derivation of some string in L(G).

Here, we can construct a DFA of a regular expression R that repeats symbol in G or symbol a, followed by a, followed by repeating symbol in G or symbol a. Let language L be the intersection of language G' and R; L will be empty if and only if A is not used. We know that the intersection of a CFL and a regular language is a CFL (refer to problem 2.18), so we can construct a decider.

First, construct a DFA for R and a CFG G' as we did above. Then, construct a PDA for L(G') using its CFG. Then, construct PDA for L from PDA of L(G'). Also, construct DFA of L(R); then construct CFG. Finally, we can submit it to the decider E_{CFG} : Our decider rejects if E_{CFG} accepts based on the fact that A was not used, and our decider accepts, otherwise.

Problem 5.9

Let $T = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w \}$

Suppose that T is decidable and M_T is its decider. We will construct a decider S for A_{TM}

 $S = "On input \langle M, w \rangle$ where M is a TM:

1. Create a TM S' as follows.

On input x:

- 1. If x does not have the form ab or ba, reject
- 2. If x has the form ab, accept
- 3. If x has the form ba, run M on w and accept if M accepts w. Otherwise, we will reject
- 2. Run M_T on S'. Output what M_T outputs."

 \Rightarrow Since S decides A_{TM} and A_{TM} is undecidable, T is undecidable.

Problem 5.12

Let $E = \{\langle M \rangle \mid M \text{ is a single tape TM which ever writes a blank symbol over a non-blank symbol on any input}\}$

Suppose that E is decidable and M_E is its decider. We will construct a decider S for A_{TM}

- S = "On input $\langle M, w \rangle$ where M is a TM:
 - 1. Create a TM S' as follows.
 - On any input:
 - 1. Simulate M on w. Use symbol \sqcup' instead of \sqcup when writing and treat it like \sqcup when reading.
 - 2. If M accepts, write a true blank symbol \sqcup .
 - 2. Run M_E on S'. Output what M_E outputs."

 \Rightarrow Since S decides A_{TM} and A_{TM} is undecidable, E is undecidable.

Let $USELESS_{TM} = \{ \langle M, q \rangle \mid q \text{ is a useless state in } M \}$

Suppose that $USELESS_{TM}$ is decidable, and let U be its decider. We will construct a decider E for E_{TM} :

 $E = "On input \langle M \rangle$ where M is a TM:

- 1. Run U on $\langle M, q_{accept} \rangle$, where q_{accept} is M's accept state.
- 2. Output what U outputs."

 \Rightarrow Since E_{TM} is undecidable, $USELESS_{TM}$ is also undecidable.

Let $L_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } 1011 \in L(M) \}$

Suppose that L_{TM} is decidable and R is a TM that decides L_{TM} . We show that A_{TM} reduces to R

We can use R to construct TM M' that decides A_{TM} M' = "On input $\langle M, w \rangle$:

- 1. On input **x**, simulate **M** on *w*. If **M** accepts *w*, then accept if **x** \in 1001.
- 2. If accepted, $1011 \in L(M')$; Otherwise $1011 \notin L(M')$."

To decide A_{TM} we do the following:

"On input $\langle M, w \rangle$, construct TM M' defined above. 1. Run R on input $\langle M \rangle$. If R accepts $\langle M' \rangle$ then accept; Otherwise reject."

 \Rightarrow Since A_{TM} is undecidable, R cannot exist. Therefore L_{TM} undecidable.

Let $ALL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } AL(M) = \Sigma^* \}$

Suppose that ALL_{TM} is decidable and R is a TM that decides ALL_{TM} . We show that A_{TM} reduces to R.

We can use R to construct TM M' that decides A_{TM} .

M' = "On input x, simulate M on w, accepting if M accepts w.

- 1. If M accepts w, then $L(M') = \Sigma^*$.
- 2. If M does not accept w, then $L(M') = \emptyset''$

To decide A_{TM} we do the following:

"On input $\langle M, w \rangle$, construct TM M' defined above. 1. Run R on input $\langle M' \rangle$

2. If R accepts $\langle M'\rangle\,$ we accept; Otherwise, reject"

 \Rightarrow Since A_{TM} is undecidable, R cannot exist. Therefore ALL_{TM} undecidable.