CS 4330 HW4 Solution

2.4 b)	Right linear G: $S \longrightarrow 0A \mid 1B \mid \epsilon$ $A \rightarrow 0A \mid 1A \mid 0$ $B \longrightarrow 0B \mid 1B \mid 1$ Left linear is obtained by reversing the rhs of G.
c)	Right linear G: $S \longrightarrow 0 1 00S 01S 10S 11S$ Left linear is obtained by reversing the rhs of G.
e)	$S \longrightarrow 0S0 1S1 0 1 \epsilon$
2.6 b)	

$$S \to XbXaX|T|U$$
$$T \to aTb|Tb|b$$
$$U \longrightarrow aUb|aU|a$$
$$X \longrightarrow a|b|aX|bX|\epsilon$$

d)

$$S \rightarrow UPV$$

$$P \rightarrow aPa|bPb|T|\epsilon$$

$$T \longrightarrow \#MT|\#$$

$$U \longrightarrow M\#U|\epsilon$$

$$V \longrightarrow MV|\epsilon$$

$$M \longrightarrow aM|bM|\epsilon$$

 $\mathbf{2.9}$

Let $G = (V, \Sigma, R, S)$ be a CFG that recognizes A where $V = \{S, E_{ab}, E_{bc}, C, A\}$ and Σ is $\{a, b, c\}$. The rules for G are

$$S \to E_{ab}C|AE_{bc}$$

$$E_{ab} \to aE_{ab}b|\epsilon$$

$$E_{bc} \longrightarrow bE_{bc}c|\epsilon$$

$$C \longrightarrow Cc|\epsilon$$

$$A \longrightarrow Aa|\epsilon$$

Consider derivations for ϵ using G. On one hand we can choose $E_{ab}C$ and then generate ϵ from both E_{ab} and C. On the other hand, we can choose AE_{bc} and get ϵ from both E_{bc} and A. Thus G is ambiguous.

2.14

First, add new start variable S_0 and new rule $S_0 \to S$,

$$S_0 \to S$$
$$S \to BSB|B|\epsilon$$
$$B \longrightarrow 00|\epsilon$$

Removing $\epsilon\text{-rules}$

$$S_0 \to S | \epsilon$$

$$S \to BSB | B | BS | SB | S | BB$$

$$B \longrightarrow 00$$

Then remove unit rules $S \longrightarrow S$

$$S_0 \rightarrow S | \epsilon$$

 $S \rightarrow BSB | B | BS | SB | BB$
 $B \longrightarrow 00$

Removing unit rules $S \longrightarrow B$

$$S_0 \rightarrow S | \epsilon$$

 $S \rightarrow BSB | 00 | BS | SB | BB$
 $B \longrightarrow 00$

Removing unit rules $S_0 \longrightarrow S$

$$S_0 \rightarrow BSB|BS|SB|BB|\epsilon$$

 $S \rightarrow BSB|BS|SB|BB$
 $B \longrightarrow 00$

Replace 0 by variable ${\cal C}$ gives

$$S_{0} \rightarrow BD|BS|SB|BB|\epsilon$$

$$S \rightarrow BD|BS|SB|BB$$

$$B \longrightarrow CC$$

$$C \longrightarrow 0$$

$$D \longrightarrow SB$$

2.16 Show that the class of context-free languages is closed under the regular operations, union, concatenation, and star.

Proof: Suppose L₁ and L₂ are generated by CFG G₁ = (V₁, Σ , S₁, P₁1) and G₂ = (V₂, Σ , S₂, P₂), respectively. Then

 $L_1 \cup L_2$ can be generated by CFG G = ({S} $\cup V_1 \cup V_2$, Σ , S, { S \rightarrow S₁| S₂ } $\cup P_1 \cup P_2$)

 L_1L_2 can be generated by CFG G = ({S} \cup V₁ \cup V₂, Σ , S, { S \rightarrow S₁S₂ } \cup P₁ \cup P₂)

L₁* can be generated by CFG G = ({S} \cup V₁ \cup V₂, Σ , S, { S \rightarrow S₁S | ϵ } \cup P₁ \cup P₂)

2.16 Show that the class of context-free languages is closed under the regular operations, union, concatenation, and star.

Proof: Suppose L₁ and L₂ are generated by CFG G₁ = (V₁, Σ , S₁, P₁) and G₂ = (V₂, Σ , S₂, P₂), respectively. Then

 $L_1 \cup L_2$ can be generated by CFG G = ({S} $\cup V_1 \cup V_2$, Σ , S, { S \rightarrow S₁| S₂ } $\cup P_1 \cup P_2$)

 L_1L_2 can be generated by CFG G = ({S} \cup V₁ \cup V₂, Σ , S, { S \rightarrow S₁S₂ } \cup P₁ \cup P₂)

L₁* can be generated by CFG G = ({S} \cup V₁ \cup V₂, Σ , S, { S \rightarrow S₁S | ϵ } \cup P₁ \cup P₂)