
Samples Solution Keys to Bonus Homework

7.26; 7.30; 7.31; 7.35; 7.38; 7.43.

Problem 7.26

a. If σ is an ≠-assignment and σ’ is its negation, then for any clause c, cσ is true
because it contains a true literal under σ; cσ’ is also true because cσ contains a
false literal, which becomes true under σ’.

b. The reduction from 3SAT to ≠SAT takes polynomial time because each clause
becomes two clauses through the reduction. Let φ be an instance of 3SAT and ϕ is
the result of reduction from φ. If σ is a model of φ, i.e., φσ = true, then σ’ = σ ∪ { zi
= ¬(y1σ ∨ y2σ) | 1 ≤i≤ m, ci is (y1 ∨ y2 ∨ y3) } ∪ { b = false } is an ≠-assignment for
ϕ, where m is the number of clauses. On the other hand, if σ is an ≠-assignment
for ϕ and bσ = false (if not, we take the negation of σ), then σ must be a model
of φ.

c. Since 3SAT is NP-complete and it’s easy to see that ≠SAT is in NP, so ≠SAT is NP-
complete because of b.

Problem 7.30.
To show that SET-SPLITTING is in NP, we guess a coloring of elements of S and check if
every subset Ci contains both colors. To show SET-SPLITTING is NP-hard, we reduce
≠SAT to SET-SPLITTING: For any instance φ of ≠SAT which has n variables and m clauses,
let S be the set of literals of and C = { C1, …, Cm | Ci is the set of literals in clause i } ∪
{ { xi, ¬xi } | 1 ≤i≤ n }. Then SET-SPLITTING has a solution iff φ has an ≠-assignment.

Problem 7.31.
It is easy to show the Exam Scheduling is in NP by guessing the triples (Si, Fj, k), meaning
student Si takes exam Fj at time slot k, 1 ≤k≤ h, and check that no time conflicts in poly-
time. To show it’s NP-hard, we reduce the graph coloring problem to the Exam
Scheduling. Let b(G, k) e an instance of the graph coloring, where G=(V,E). We transform
(G, k) into an instance (S, F, k) of the Exam Scheduling, where S = V, the set of exams,
and F = { {x, y} | (x, y) ∈ E }, that is, each edge becomes a student who will take two
exams. Then G has a k-coloring of vertices iff all exams can be scheduled in k time slots
without conflicts. The details of the correctness proof is omitted here.

Problem 7.35.
To show that is Dominating Set in NP, we guess a subset of vertices and check that it
contains k vertices, and every vertex not in the subset is connected to a vertex in the
subset. This takes linear time to check. To show Dominating Set is NP-hard, we reduce
Vertex Cover to Dominating Set: For any instance (G, k) of Vertex Cover, where G=(V,E),
let G’ = (V’, E’), where V’ = V ∪ { zx,y | (x, y) ∈ E }, E’ = E ∪ { (x, zx,y), (y, zx,y) | (x, y) ∈ E }.
Then G has a vertex cover of size k iff G’ has a dominating set of size k. Its correctness
proof goes as follows:

(a) If G has a vertex cover S of size k, then S is a dominating set of G’, because for
each edge (x, y) of E, either x or y is in S and that vertex dominates x, y, and zx,y.

(b) Suppose G’ has a dominating set T of size k. For each zx,y in T, we replace zx,y. by
either x, without destroying the property of dominating. After the above changes,
T does not contain any zx,y. Thus T is a vertex cover of G.

Problem 7.38.
If P=NP and φ is an instance of SAT, then we have a polynomial time algorithm A which
returns true iff φ is satisfiable. We may use A to find a truth assignment σ such that σ(φ)
= true. This is done by the following algorithm, which takes polynomial time:

Boolean findAssignment (φ)
 // suppose φ contains n Boolean variables, x1, x2, …, xn.

0. σ := { }
1. For i := 1 to n do {
2. ϕ := φ[xi ← true] // replace each occurrence of xi by true in φ
3. If (A(φ) = true) { σ := σ ∪ { xi ← true }; φ := ϕ}
4. Else { σ := σ ∪ { xi ← false }; φ := φ[xi ← false] }
5. }
6. Return σ;

Problem 7.43.
For any CNF φ which has m variables, x1, x2, …, xm, and c clauses, C1, C2, …, Cc, we can
construct an NFA N of cm+2 states. We have an initial state q0, a single accepting state
qf, and for each clause Cj in φ, we dedicate m states to Cj: qj,1, qj,2, …, qj,m., with the
transition that δ(q0, ε) = { qj,1 | 1 ≤j≤ c }, and

• if xi appears in Cj, δ(qj,i, 0) = { qj,i+1 }, δ(qj,i, 1) = { };
• if ¬xi appears in Cj, δ(qj,i, 0) = { }, δ(qj,i, 1) = { qj,i+1 };
• if neither xi nor ¬xi appears in Cj, δ(qj,i, 0) = δ(qj,i, 1) = { qj,i+1 },

where qj,m+1 represents qf. Then any unsatisfying assignment σ of φ can be represented
by a binary string b1b2…bm, where σ(xi) = bi, which will be accepted by N and N accepts
only such binary strings.

If NFAs can be minimized in polynomial time, we may solve SAT in polynomial
time as follows: Let CNF φ have m variables. (1) Construct NFA N as described above; (2)
Minimize N to N’. (3) If N’ is an NFA of m+1 states which accept every binary string of
length m, then claim “φ is unsatisfiable”, else “φ is satisfiable”. This is because if φ is
unsatisfiable, then every assignment is an unsatisfying assignment and every binary
string of length m will be accepted by N’. A minimal such NFA will only need m+1 states.

