
Samples Solution Keys to Bonus Homework 
 
7.26; 7.30; 7.31; 7.35; 7.38; 7.43. 
 
Problem 7.26  
 

a. If σ is an ≠-assignment and σ’ is its negation, then for any clause c, cσ is true 
because it contains a true literal under σ; cσ’ is also true because cσ contains a 
false literal, which becomes true under σ’. 

b. The reduction from 3SAT to ≠SAT takes polynomial time because each clause 
becomes two clauses through the reduction. Let φ be an instance of 3SAT and ϕ is 
the result of reduction from φ. If σ is a model of φ, i.e., φσ = true, then σ’ = σ ∪ { zi 
= ¬(y1σ ∨ y2σ) | 1 ≤i≤ m, ci is (y1 ∨ y2 ∨ y3) } ∪ { b = false } is an ≠-assignment for 
ϕ, where m is the number of clauses. On the other hand, if σ is an ≠-assignment 
for ϕ and  bσ = false (if not, we take the negation of σ), then σ must be a model 
of φ. 

c. Since 3SAT is NP-complete and it’s easy to see that ≠SAT is in NP, so ≠SAT is NP-
complete because of b. 

 
Problem 7.30. 
To show that SET-SPLITTING is in NP, we guess a coloring of elements of S and check if 
every subset Ci contains both colors. To show SET-SPLITTING is NP-hard, we reduce 
≠SAT to SET-SPLITTING: For any instance φ of ≠SAT which has n variables and m clauses, 
let S be the set of literals of and C = { C1, …, Cm | Ci is the set of literals in clause i } ∪ 
{ { xi, ¬xi } | 1 ≤i≤ n }. Then SET-SPLITTING has a solution iff φ has an ≠-assignment. 
 
Problem 7.31. 
It is easy to show the Exam Scheduling is in NP by guessing the triples (Si, Fj, k), meaning 
student Si takes exam Fj at time slot k, 1 ≤k≤ h, and check that no time conflicts in poly-
time. To show it’s NP-hard, we reduce the graph coloring problem to the Exam 
Scheduling. Let b(G, k) e an instance of the graph coloring, where G=(V,E). We transform 
(G, k) into an instance (S, F, k) of the Exam Scheduling, where S = V, the set of exams, 
and F = { {x, y} | (x, y) ∈ E }, that is, each edge becomes a student who will take two 
exams. Then G has a k-coloring of vertices iff all exams can be scheduled in k time slots 
without conflicts. The details of the correctness proof is omitted here. 
 
 



Problem 7.35. 
To show that is Dominating Set in NP, we guess a subset of vertices and check that it 
contains k vertices, and every vertex not in the subset is connected to a vertex in the 
subset. This takes linear time to check. To show Dominating Set is NP-hard, we reduce 
Vertex Cover to Dominating Set: For any instance (G, k) of Vertex Cover, where G=(V,E), 
let G’ = (V’, E’), where V’ = V ∪ { zx,y | (x, y) ∈ E }, E’ = E ∪ { (x, zx,y), (y, zx,y) | (x, y) ∈ E }. 
Then G has a vertex cover of size k iff G’ has a dominating set of size k. Its correctness 
proof goes as follows: 

(a) If G has a vertex cover S of size k, then S is a dominating set of G’, because for 
each edge (x, y) of E, either x or y is in S and that vertex dominates x, y, and zx,y. 

(b) Suppose G’ has a dominating set T of size k. For each zx,y in T, we replace zx,y. by 
either x, without destroying the property of dominating. After the above changes, 
T does not contain any zx,y. Thus T is a vertex cover of G. 

  
Problem 7.38. 
If P=NP and φ is an instance of SAT, then we have a polynomial time algorithm A which 
returns true iff φ is satisfiable. We may use A to find a truth assignment σ such that  σ(φ) 
= true. This is done by the following algorithm, which takes polynomial time: 
 
Boolean findAssignment (φ) 
      // suppose φ contains n Boolean variables, x1, x2, …, xn. 

0. σ := { } 
1. For i := 1 to n do { 
2.       ϕ := φ[xi ← true ] // replace each occurrence of xi by true in φ  
3.       If (A(φ) = true) {  σ := σ ∪ { xi ← true };  φ := ϕ} 
4.       Else {  σ := σ ∪ { xi ← false };  φ := φ[xi ← false ] } 
5. } 
6. Return  σ; 

 
Problem 7.43. 
For any CNF φ which has m variables, x1, x2, …, xm, and c clauses, C1, C2, …, Cc, we can 
construct an NFA N of cm+2 states. We have an initial state q0, a single accepting state 
qf, and for each clause Cj in φ, we dedicate m states to Cj: qj,1, qj,2, …, qj,m., with the 
transition that δ( q0, ε) = { qj,1 | 1 ≤j≤ c }, and 

• if xi appears in Cj, δ( qj,i, 0) = { qj,i+1 }, δ( qj,i, 1) = { };  
• if ¬xi appears in Cj, δ( qj,i, 0) = { }, δ( qj,i, 1) = { qj,i+1 };  
• if neither xi nor ¬xi appears in Cj, δ( qj,i, 0) = δ( qj,i, 1) = { qj,i+1 },  



where qj,m+1 represents qf. Then any unsatisfying assignment σ of φ can be represented 
by a binary string b1b2…bm, where σ(xi) = bi,  which will be accepted by N and N accepts 
only such binary strings. 

If NFAs can be minimized in polynomial time, we may solve SAT in polynomial 
time as follows: Let CNF φ have m variables.  (1) Construct NFA N as described above; (2) 
Minimize N to N’. (3) If N’ is an NFA of m+1 states which accept every binary string of 
length m, then claim “φ is unsatisfiable”, else “φ is satisfiable”. This is because if φ is 
unsatisfiable, then every assignment is an unsatisfying assignment and every binary 
string of length m will be accepted by N’. A minimal such NFA will only need m+1 states.  
 


