Samples Solution Keys to Bonus Homework
7.26; 7.30; 7.31; 7.35; 7.38; 7.43.
Problem 7.26

a. If ois an #-assignment and o’ is its negation, then for any clause c, co is true
because it contains a true literal under o; co’ is also true because co contains a
false literal, which becomes true under ¢’.

b. The reduction from 3SAT to #SAT takes polynomial time because each clause
becomes two clauses through the reduction. Let ¢ be an instance of 3SAT and ¢ is
the result of reduction from ¢. If ¢ is a model of ¢, i.e., o = true, then ¢’ =5 U { z
=—(yio vy2o) | 1<i<m,ciis (y1Vvy2Vvys) }u{b="false}is an #-assignment for
@, where m is the number of clauses. On the other hand, if ¢ is an #-assignment
for ¢ and bo = false (if not, we take the negation of G), then o must be a model
of ¢.

c. Since 3SAT is NP-complete and it’s easy to see that #SAT is in NP, so #SAT is NP-
complete because of b.

Problem 7.30.

To show that SET-SPLITTING is in NP, we guess a coloring of elements of S and check if
every subset Ci contains both colors. To show SET-SPLITTING is NP-hard, we reduce
#SAT to SET-SPLITTING: For any instance ¢ of #SAT which has n variables and m clauses,
let S be the set of literals of and C={ Cy, ..., Cm | Ciis the set of literals in clause i } U
{{xi, =xi } | 1<i<n}. Then SET-SPLITTING has a solution iff ¢ has an #-assignment.

Problem 7.31.

It is easy to show the Exam Scheduling is in NP by guessing the triples (Si, Fj, k), meaning
student S; takes exam Fj at time slot k, 1 <k< h, and check that no time conflicts in poly-
time. To show it’s NP-hard, we reduce the graph coloring problem to the Exam
Scheduling. Let b(G, k) e an instance of the graph coloring, where G=(V,E). We transform
(G, k) into an instance (S, F, k) of the Exam Scheduling, where S =V, the set of exams,
and F={{x,y} | (x,y) € E}, thatis, each edge becomes a student who will take two
exams. Then G has a k-coloring of vertices iff all exams can be scheduled in k time slots
without conflicts. The details of the correctness proof is omitted here.

Problem 7.35.
To show that is Dominating Set in NP, we guess a subset of vertices and check that it
contains k vertices, and every vertex not in the subset is connected to a vertex in the
subset. This takes linear time to check. To show Dominating Set is NP-hard, we reduce
Vertex Cover to Dominating Set: For any instance (G, k) of Vertex Cover, where G=(V,E),
let G’ = (V’, E'), where V' =V U {zxy | (Xx,y) € E},E'=EU{(X, zxy), (Y, Zxy) | (X,y) € E }.
Then G has a vertex cover of size k iff G’ has a dominating set of size k. Its correctness
proof goes as follows:
(a) If G has a vertex cover S of size k, then S is a dominating set of G, because for
each edge (x, y) of E, either x or y is in S and that vertex dominates x, y, and zy,,.
(b) Suppose G’ has a dominating set T of size k. For each zx, in T, we replace z,. by
either x, without destroying the property of dominating. After the above changes,
T does not contain any zxy. Thus T is a vertex cover of G.

Problem 7.38.

If P=NP and ¢ is an instance of SAT, then we have a polynomial time algorithm A which
returns true iff ¢ is satisfiable. We may use A to find a truth assignment ¢ such that c(¢)
= true. This is done by the following algorithm, which takes polynomial time:

Boolean findAssignment (¢)
// suppose ¢ contains n Boolean variables, x1, X2, ..., Xn.
0. o:={}
1. Fori:=1tondo{
2 @ := ¢[xi<— true] // replace each occurrence of xiby true in ¢
3. If (A(p) =true){ c:=c U {xi<true}; ¢:=o}
4, Else{ c:=c U {xi<false}; ¢ :=¢[xi« false]}
5.}
6. Return o;
Problem 7.43.
For any CNF ¢ which has m variables, x3, x2, ..., Xm, and c clauses, Cy, C,, ..., C,, we can
construct an NFA N of cm+2 states. We have an initial state qo, a single accepting state
gr, and for each clause Cjin ¢, we dedicate m states to Cj: q;1, qj2, ..., q;m., With the
transition that 8(qo, €) ={qg;1 | 1 <j<c}, and
e ifxiappearsinC, d(qj, 0)={qji«1},0(q, 1)={};
o if —xiappearsinCj, d(qji, 0)={}, d(qi, 1) ={qi+1};
e if neither xi nor —xi appears in C;, 8(q;j,, 0) = d(qj,i, 1) = { qj,i+1 },

where qjm+1 represents gs. Then any unsatisfying assignment ¢ of ¢ can be represented

by a binary string b1b,...om, where o(x;) = bi, which will be accepted by N and N accepts
only such binary strings.

If NFAs can be minimized in polynomial time, we may solve SAT in polynomial
time as follows: Let CNF ¢ have m variables. (1) Construct NFA N as described above; (2)
Minimize N to N’. (3) If N” is an NFA of m+1 states which accept every binary string of
length m, then claim “¢ is unsatisfiable”, else “¢ is satisfiable”. This is because if ¢ is
unsatisfiable, then every assignment is an unsatisfying assignment and every binary
string of length m will be accepted by N’. A minimal such NFA will only need m+1 states.

