
CS 4330, Homework 10 Sample Solutions (Fall 2020)

Problem 7.7

NP is closed under union. For any two NP-languages L1 and L2, let M1 and M2 be the
NTMs that decide them in polynomial time. We construct a NTM M ′ that decides the union
of L1 and L2 in polynomial time:

M ′ = "On input w
1. Run M1 on w. If it accepts, accept.
2. Run M2 on w. If it accepts, accept. Otherwise, reject"

M ′ accepts w if and only if either M1 and M2 accepts w. Therefore, M ′ decides the union
of L1 and L2. Since both steps take polynomial time, the algorithm runs in polynomial time.

NP is closed under concatenation. For any two NP-languages L1 and L2, let M1 and M2

be the NTMs that decide them in polynomial time. We construct a NTM M ′ that decides the
concatenation of L1 and L2 in polynomial time.

M ′ = "On input w
1. Nondeterministically cut w into two substrings w = w1w2

2. Run M1 on w1

3. Run M2 on w2. If both accept, accept otherwise continue with the next choice of w1 and w2"

In both steps, M ′ uses its non determinism when the machine is being run. M ′ accepts w if 
and only if w can be expressed as w1w2 such that M1 accepts w1 and M2 accepts w2. Therefore, 
M ′ decides the concatenation of L1 and L2. Since step 2 and 3 runs in polynomial time and is 
repeated for at most O(n) time, the algorithm runs in polynomial time.

Problem 7.10

Note that it takes linear time to decide if there is a path from one vertex to another vertex in a graph. 
A TM M that decides ALLDFA in polynomial time operates as follows:

M = “On input M where M is a DFA:

1. Construct directed graph G=(Q, E), where E contains (q, p) if p is  a next state of q.
2. Test whether a path exists from the start state to one non-accept state in G.
3. If no such path exists, accept; otherwise, reject.”
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Problem 7.13

Let MODEXP = {〈a, b, c, p〉 | a, b, c, and p are positive binary integers such that ab = c (mod p)}

Show that MODEXP ∈P

Because b is a binary integer, let b = b1b2...bn−1bn. So the decimal representation of b is∑n
k=1 bn−k+12k−1. By the hint, we observe that a(10)2 = a2 and a(1000)2 = ((a2)2)2.

Construct the following algorithm to decide MODEXP :

A = “On input 〈a, b, c, p〉where a, b, c, and p are positive binary integers:
1. Let T = 1 (and n = dlog2be).
2. For i = 1 to n,

a. if bi = 1, T = (a(T 2) (mod p)),
b. if bi = 0, T = (T 2 (mod p));

3. Return T (mod p).
4. If T = c (mod p), accept; otherwise reject."

Assume that a, b, c and p are at most m bits (so n ≤ m). It is known that two m-bit numbers cost
O(m2) unit time to do multiplication and division (and hence modular), so each i costs O(m2) time.
The total cost of the for loop is O(m2)× n = O(m3), which is the dominant cost of all steps. The time
complexity of the algorithm A is polynomial in the length of its input.

Problem 7.15

P is closed under the star operation.

Assume that Σ = {a, b}. Then, star operation yields any combination of a and b, where checking whether
any string that is generated by this star operation belong to this language can be done in polynomial time
which is the length of the string. If we use dynamic programming approach, we’ll save the result of whether a
string belong to the language. In this way, if we want to find if a string with length n+ 1 belong to this language,
we can check whether the substring of length n (excluding the last character) is in the language, then check if
the last character is also in the language. Take this idea, given an input string w, we can divide this into two
substrings, and check whether these substrings both belong to the language. This procedure can be done in
polynomial time.
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Problem 7.18

Show that if P = NP , then every language A ∈ P , except A = ∅ and A = Σ∗, is NP-complete.

Let A be any language in NP and let B be another language not equal ∅ or Σ∗. Then there exist
strings x ∈ B and y /∈ B. To reduce an instance w of A to that of B, we just check in polynomial time if
w ∈ A. If yes, we output x and y when w /∈ A. That is, f(w) = x if w ∈ A, and f(w) = y if w /∈ A. So
w ∈ A iff f(w) ∈ B.

The languages ∅ and Σ∗ cannot be NP -complete, because to reduce a language A to a language B, we
need to map instances in A to instances in B and those outside of A to outside B. However, for B = ∅,
there are no instances in B (and none outside B for B = Σ∗) which means there cannot be such a
reduction from any language A 6= ∅, Σ∗.

Problem 7.21

a. SPATH ∈ P because breadth-first search (BFS) can be used to compute the shortest paths from
a to any other points. If the shortest path from a to b is equal to or less than k, then (G, a, b, k) ∈ SPATH;
otherwise, then (G, a, b, k) /∈ PATH. Since BFS takes linear time, SPATH ∈ P .

b. LPATH ∈ NP because there exists a polynomial time verification algorithm which takes (G, a, b, k, s),
where s is a list of k distinct vertices of G, starting at a and ending with b. The verification
algorithm will check if there exists an edge of G between any two consecutive points in s. This
checking takes O(k) time where k < n, and n is the number of vertices in G. To show that
LPATH is NP-Hard, we reduce the HAMPATH problem to LPATH. For any instance (G, s, t) of
HAMPATH there exists a Hamiltonian path from s to t in G iff there exists a simple path from s
to t of length at least n− 1, where n is the number of vertices in G. So the reduction takes (G, s, t)
and produces (G, s, t, k), where k = n− 1. This reduction takes linear time.
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Problem 7.22

DOUBLE-SAT ∈ NP because there exists a polynomial time verification algorithm which takes (φ, s) where
s = {s1, s2}, two distinct assignments of Boolean formula φ, and check if both s1 and s2 are models of φ,
i.e., s1 and s2 are satisfying assignments of φ.

DOUBLE- SAT is NP-hard because we can reduce SAT to DOUBLE-SAT: for any instance φ of SAT, let z be
a Boolean variable not appearing in φ, and φ′ = φ and (y ∨ ¬y). Then φ is satisfiable iff φ′ has at least
two satisfying assignments. That is, if φ has one satisfying assignment, say s, then let s1 = s ∪ {y = true}
and s2 = s ∪ {y = false}, then both s1 and s2 are satisfying assignments of φ′. On the other hand, if φ′ has
two satisfying assignments, these two assignments are also satisfying assignments of φ by ignoring y.

Problem 7.24

a. CNF2 ∈ P because there exists a polynomial time algorithm to solve CNF2. For any Boolean
formula φ we construct G = (V , E), where V is the set of all possible literals using the variables in
φ and E consists of the following edges: For any binary clause (a ∨ b) of φ, we create two
edges: ¬a to b and ¬b to a. This graph represents the implication relation between the literals.
Then φ is satisfiable iff there exists no cycles in G such that both x and ¬x are in the cycle for
some variable x. That is, if φ has a satisfying assignment, then every binary clause (a ∨ b) is
true, so the associated two implications (¬a→ b) and (¬b→ a) must be true. That means x and
¬x cannot be in the same cycle of G, because the implication relation is transitive. If they are
in the same cycle, we would have both (¬x→ x) and (x→ ¬x) being true, impossible in logic.

On the other hand, if G does not have such a cycle, we may assign a true value to every literal in
V : If there exists a path from ¬x to x, assign x true. If there exists a path from x to ¬x, assign x
false. For each edge (a, b), if a is assigned true, then assign b to be true; if b is assigned false,
then assign a to be false. We will obtain a satisfying assignment of φ this way.

b. The implication of CNF3 is in form a then b ∨ c. If we set a to be True, then b or c must be True, but we
cannot determine which one to be True. Therefore, CNF3 /∈ P . Which means, CNF3 is NP-complete.
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