Midterm 3 (22C:123)
Open Books and Notes

1. (50) (Algebraic Semantics) On page 490 of the textbook, the module SymbolTable is defined as an instance of Mapping. You are asked to add the function table-union (tu for short), which is used in the attribute grammar of Wren (on page 79), into this module.

(a) Please formally define tu, which should have the same behavior as the one given on page 79.

Answer: We add the following into Module WrenTypeChecker on pages 490-491:

operations

tu: SymbolTable, SymbolTable --> SymbolTable

variables

(same as on page 491)

equations

\[
tu(\text{nullSymTab}, \text{symtab}) = \text{symtab}
\]
\[
tu(\text{update}(\text{name}, \text{type}, \text{symtab1}), \text{symtab}) = \\
\quad \text{update}(\text{name}, \text{type}, tu(\text{symtab1}, \text{symtab}))
\]
\[\text{when apply}(\text{symtab}, \text{name}) = \text{ErrorType}\]
\[
tu(\text{update}(\text{name}, \text{type}, \text{symtab1}), \text{symtab}) = tu(\text{symtab1}, \text{symtab})
\]
\[\text{when apply}(\text{symtab}, \text{name}) \neq \text{ErrorType}\]

(b) Please decide whether the following two properties are true; if it is true, give a complete formal proof, otherwise, give a counter-example.

\[
tu(t1, t2) = tu(t2, t1)
\]
\[
tu(t1, tu(t2, t3)) = tu(tu(t1, t2), t3)
\]

where t1, t2, t3 are variables of SymbolTable.

Answer: (1) In general, tu(t1, t2) is NOT equal to tu(t2, t1).

Counterexample: Let t1 = update(“x”, naturalType, nullSymTab), and t2 = update(“y”, naturalType, nullSymTab). Then

\[
tu(t1, t2) = \text{update}(\text{“x”}, \text{naturalType, update}(\text{“y”}, \text{naturalType, nullSymTab}))
\]
\[
tu(t2, t1) = \text{update}(\text{“y”}, \text{naturalType, update}(\text{“x”}, \text{naturalType, nullSymTab}))
\]

(2) In general, tu(t1, tu(t2, t3)) = tu(tu(t1, t2), t3). We prove this by the structural induction on variable t1.

Basic case: t1 = nullSymTab.

Left = tu(nullSymTab, tu(t2, t3)) = tu(t2, t3).

Right = tu(tu(nullSymTab, t2), t3) = tu(t2, t3).

Inductive case: t1 = update(name, type, t4).

As the induction hypothesis, we have tu(t4, tu(t2, t3)) = tu(tu(t4, t2), t3), and we assume that name does not appear in t4.
There are two subcases:

Case 1: name is neither in t2 nor in t3. That is, apply(t2, name) = ErrorType and apply(t3, name) = ErrorType.

In this case, we can prove that the following lemma holds:

Lemma 1: apply(tu(t2, t3), name) = ErrorType

\[
\text{Left} = tu(\text{update}(\text{name, type, t4}, tu(t2, t3)) \\
= \text{update}(\text{name, type, tu(t4, tu(t2, t3))) (by Lemma 1)} \\
\text{Right} = tu(\text{tu(update(name, type, t4), t2), t3}) \\
= tu(tu(t4, t2), t3) \\
= tu(t4, tu(t2, t3)) (by Induction Hypothesis) \\
= \text{Left}
\]

Case 2: name is in t2 or in t3. That is, apply(t2, name) != ErrorType or apply(t3, name) != ErrorType.

Lemma 2: apply(tu(t2, t3), name) != ErrorType

\[
\text{Left} = tu(\text{update}(\text{name, type, t4), tu(t2, t3)) \\
= tu(t4, tu(t2, t3)) (by Lemma 2)
\]

There are two more subcases:

Case 2.1: apply(t2, name) != ErrorType

\[
\text{Right} = tu(\text{tu(update(name, type, t4), t2), t3}) \\
= tu(tu(t4, t2), t3) \\
= tu(t4, tu(t2, t3)) (by Induction Hypothesis) \\
= \text{Left}
\]

Case 2.2: apply(t2, name) = ErrorType and apply(t3, name) != ErrorType.

\[
\text{Right} = tu(\text{tu(update(name, type, t4), t2), t3}) \\
= tu(\text{update(name, type, tu(t4, t2), t3}) \\
= tu(tu(t4, t2), t3) \\
= tu(t4, tu(t2, t3)) (by Induction Hypothesis) \\
= \text{Left}
\]

This completes the proof.
2. (50) (**Axiomatic Semantics**) The following is a BabyWren program segment C which computes the ceiling of the square root of $n > 0$:

```plaintext
x := 1; y := 1;
while (y < n) do
  y := y + 2\times x + 1;
  x := x + 1;
end while;
```

(a) Please state and establish the loop invariant formally and clearly.

Sketch of the answer: The loop invariant is

$$P(x, y) : (y = x^2) \land (x - 1)^2 < n$$

You need to prove that (i) P is true right before the loop; (ii) P is true right after the loop.

(b) Please establish the total correctness of $\{ n > 0 \} C \{ x = \lceil \sqrt{n} \rceil \}$.

Sketch of the answer: For the partial correctness, we need to prove that $P(x, y) \land y \geq n$ imply $\{ x = \lceil \sqrt{n} \rceil \}$. This is true, because, from $P(x, y) \land y \geq n$, we have $(y = x^2) \land (x - 1)^2 < n \land y \geq n$, or simply $x^2 \geq n$ and $(x - 1)^2 < n$, which is equivalent to $\{ x = \lceil \sqrt{n} \rceil \}$.

For the total correctness, we need to prove that the while loop will terminate. Pick the natural numbers with the well-founded order $>$, it’s easy to see that $n - x$ is a natural number after each loop and its value is decreasing after each loop.