CS:5810
Formal Methods in Software Engineering

Sets and Relations
These Notes

- review the concepts of sets and relations required for working with the Alloy language

- focus on the kind of set operation and definitions used in specifications

- give some small examples of how we will use sets in specifications
Set

• Collection of distinct objects
• Each set’s objects are drawn from a larger domain of objects all of which have the same type --- sets are homogeneous
• Examples:

<table>
<thead>
<tr>
<th>{2, 4, 5, 6, …}</th>
<th>set of integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>{red, yellow, blue}</td>
<td>set of colors</td>
</tr>
<tr>
<td>{true, false}</td>
<td>set of boolean values</td>
</tr>
<tr>
<td>{red, true, 2}</td>
<td>for us, not a set!</td>
</tr>
</tbody>
</table>
Value of a Set

• Is the collection of its members

• Two sets A and B are equal iff
 – every member of A is a member of B
 – every member of B is a member of A

• $x \in S$ denotes “x is a member of S”

• \emptyset denotes the empty set
Defining Sets

• We can define a set by *enumeration*
 - PrimaryColors == {red, yellow, blue}
 - Boolean == {true, false}
 - Evens == {..., -4, -2, 0, 2, 4, ...}

• This works fine for finite sets, but
 - what do we mean by “...” ?
 - remember, we want to be precise
Defining Sets

• We can define a set by *comprehension*, that is, by describing a property that its elements must share.

• Notation: \(\{ x : D \mid P(x) \} \)
 - Form a new set of elements drawn from domain \(D \) by including exactly the elements that satisfy predicate (i.e., Boolean function) \(P \).

• Examples:

 \[\{ x : \mathbb{N} \mid x < 10 \} \] \textbf{Naturals less than 10}

 \[\{ x : \mathbb{Z} \mid (\exists y : \mathbb{Z} \mid x = 2y) \} \] \textbf{Even integers}

 \[\{ x : \mathbb{N} \mid x > x \} \] \textbf{Empty set of natural numbers}
Cardinality

• The *cardinality* (#) of a finite set is the number of its elements

• Examples:
 - # \{red, yellow, blue\} = 3
 - # \{1, 23\} = 2
 - # \mathbb{Z} = ?

• Cardinalities are defined for infinite sets too, but we’ll be most concerned with the cardinality of finite sets
Set Operations

• Union (X, Y sets over domain D):
 – \(X \cup Y \equiv \{ e: D \mid e \in X \text{ or } e \in Y \} \)
 – \{\text{red}\} \cup \{\text{blue}\} = \{\text{red, blue}\}

• Intersection
 – \(X \cap Y \equiv \{ e: D \mid e \in X \text{ and } e \in Y \} \)
 – \{\text{red, blue}\} \cap \{\text{blue, yellow}\} = \{\text{blue}\}

• Difference
 – \(X \setminus Y \equiv \{ e: D \mid e \in X \text{ and } e \notin Y \} \)
 – \{\text{red, yellow, blue}\} \setminus \{\text{blue, yellow}\} = \{\text{red}\} \)
Subsets

• A *subset* holds elements drawn from another set
 – $X \subseteq Y$ *iff* every element of X is in Y
 – $\{1, 7, 17, 24\} \subseteq Z$

• A *proper subset* is a non-equal subset

• Another view of set equality
 – $A = B$ *iff* $(A \subseteq B$ and $B \subseteq A)$
Power Sets

• The power set of set S (denoted $Pow(S)$) is the set of all subsets of S, i.e.,

$$Pow(S) \equiv \{e \mid e \subseteq S\}$$

• Example:

 $Pow\left(\{a,b,c\}\right) = \{\emptyset, \{a\}, \{b\}, \{c\},$
 \n $\{a,b\}, \{a,c\}, \{b,c\},$
 \n $\{a,b,c\}\}$

Note: for any S, $\emptyset \subseteq S$ and thus $\emptyset \in Pow(S)$
Exercises

• These slides include questions that you should be able to solve at this point

• They may require you to think some

• You should spend some effort in solving them
 – ... and may in fact appear on exams
Exercises

• Specifying using comprehension notation
 – Odd positive integers
 – The squares of integers, i.e. \{1,4,9,16,...\}

• Express the following logic properties on sets without using the # operator
 – Set has at least one element
 – Set has no elements
 – Set has exactly one element
 – Set has at least two elements
 – Set has exactly two elements
Set Partitioning

- Sets are *disjoint* if they share no elements.
- Often when modeling, we will take some set S and divide its members into disjoint subsets called *blocks* or *parts*.
- We call this division a *partition*.
- Each member of S belongs to exactly one block of the partition.

![Partition Diagram]

CS:5810 -- Formal Methods in Software Engineering Fall 2018
Example

Model residential scenarios

• Basic domains: Person, Residence

• Partitions:
 – Partition Person into Child, Adult
 – Partition Residence into Home, DormRoom, Apartment
Expressing Relationships

• It’s useful to be able to refer to structured values
 – a group of values that are bound together
 – e.g., struct, record, object fields
• Alloy is a calculus of relations
• All of our Alloy models will be built using relations (sets of tuples)
• ... but first some basic definitions
Product

• Given two sets A and B, the product of A and B, usually denoted $A \times B$, is the set of all possible pairs (a, b) where $a \in A$ and $b \in B$

$$A \times B \equiv \{ (a, b) \mid a \in A, b \in B \}$$

• Example: PrimaryColor \times Boolean:

\[
\begin{align*}
(red, true), & \quad (red, false), \\
(blue, true), & \quad (blue, false), \\
(yellow, true), & \quad (yellow, false)
\end{align*}
\]
A binary relation \(R \) between \(A \) and \(B \) is an element of \(\text{Pow}(A \times B) \), i.e., \(R \subseteq A \times B \).

Examples:

- **Parent**: Person \(\times \) Person
 - Parent = \{ (John, Autumn), (John, Sam) \}

- **Square**: \(\mathbb{Z} \times \mathbb{N} \)
 - Square = \{ (1,1), (-1,1), (-2,4) \}

- **ClassGrades**: Person \(\times \) \{A, B, C, D, F\}
 - ClassGrades = \{ (Todd,A), (Jane,B) \}
• A ternary relation R between A, B and C is an element of $Pow(A \times B \times C)$

• Example:
 – FavoriteBeer : Person x Beer x Price
 • FavoriteBeer = \{ (John, Miller, $2), (Ted, Heineken, $4), (Steve, Miller, $2) \}

• N-ary relations with $n>3$ are defined analogously (n is the arity of the relation)
Binary Relations

• The set of first elements is the *definition domain* of the relation
 – Parent = \{ (John, Autumn), (John, Sam) \}
 – \textit{domain} (Parent) = \{John\} \quad \text{NOT Person!}

• The set of second elements is the *image* of the relation
 – \textit{image} (Square) = \{1,4\} \quad \text{NOT } \mathbb{N}!

• How about \{ (1,blue), (2,blue), (1,red) \}
 – domain? \quad \text{image?}
Common Relation Structures

One-to-Many

Many-to-One

One-to-One

Many-to-Many
Functions

• A *function* is a relation F of arity $n+1$ containing no two distinct tuples with the same first n elements,

 – i.e., for $n = 1$,

 $$\forall (a_1, b_1) \in F, \forall (a_2, b_2) \in F, (a_1 = a_2 \implies b_1 = b_2)$$

• Examples:

 – { (2, red), (3, blue), (5, red) }
 – { (4, 2), (6,3), (8, 4) }

• Instead of $F: A_1 \times A_2 \times \ldots \times A_n \times B$

 we write $F: A_1 \times A_2 \times \ldots \times A_n \rightarrow B$
Exercises

• Which of the following are functions?

 – Parent = \{ (John, Autumn), (John, Sam) \}

 – Square = \{ (1, 1), (-1, 1), (-2, 4) \}

 – ClassGrades = \{ (Todd, A), (Vic, B) \}
In other words, a function is a relation that is X-to-one.
Special Kinds of Functions

• Consider a function f from S to T

• f is *total* if defined for all values of S

• f is *partial* if undefined for some values of S

• Examples

 – Squares : $\mathbb{Z} \rightarrow \mathbb{N}$, Squares = {..., (-1,1), (0,0), (1, 1), (2,4), ...}

 – Abs = \{(x, y) : \mathbb{Z} \times \mathbb{N} \mid (x < 0 \text{ and } y = -x) \text{ or } (x \geq 0 \text{ and } y = x)\}
Function Structures

Total Function

Partial Function

Note: the empty relation over an non-empty domain is a partial function

Undefined for this input
Special Kinds of Functions

A function $f: S \rightarrow T$ is

- **injective** (one-to-one) if no image element is associated with multiple domain elements
- **surjective** (onto) if its image is T
- **bijective** if it is both injective and surjective

We’ll see that these come up frequently – can be used to define properties concisely
Function Structures

Injective Function

Surjective Function
Exercises

• What kind of function/relation is Abs?
 – \(\text{Abs} = \{ (x, y) : \mathbb{Z} \times \mathbb{N} \mid (x < 0 \text{ and } y = -x) \text{ or } (x \geq 0 \text{ and } y = x) \} \)

• How about Squares?
 – \(\text{Squares} : \mathbb{Z} \times \mathbb{N}, \text{Squares} = \{ (x, y) : \mathbb{Z} \times \mathbb{N} \mid y = x^2 \} \)
Special Cases

Relations

Partial Functions

Surjective

Bijective

Injective

Total
Functions as Sets

• Functions are relations and hence sets

• We can apply to them all the usual operators

 – ClassGrades = \{ (Todd, A), (Jane, B) \}

 – #(ClassGrades \cup \{ (Matt, C) \}) = 3
Exercises

• In the following if an operator fails to preserve a property give an example
• What operators preserve function-ness?
 – ∩ ?
 – ∪ ?
 – \ ?
• What operators preserve surjectivity?
• What operators preserve injectivity?
Relation Composition

• Use two relations to produce a new one
 – map domain of first to image of second
 – Given \(s: A \times B \) and \(r: B \times C \) then \(s;r : A \times C \)

\[
s;r \equiv \{ (a,c) \mid (a,b) \in s \text{ and } (b,c) \in r \}
\]

• For example

 – \(s = \{ (\text{red},1), (\text{blue},2) \} \)
 – \(r = \{ (1,2), (2,4), (3,6) \} \)
 – \(s;r = \{ (\text{red},2), (\text{blue},4) \} \)

Not limited to binary relations
Relation Transitive Closure

• Intuitively, the transitive closure of a binary relation \(r: S \times S \), written \(r^+ \), is what you get when you keep navigating through \(r \) until you can’t go any farther.

\[
r^+ \equiv r \cup (r;r) \cup (r;r;r) \cup ... \]

• Formally, \(r^+ \equiv \) smallest transitive relation containing \(r \)

• For example
Relation Transpose

• Intuitively, the \textit{transpose} of a relation $r: S \times T$, written $\sim r$, is what you get when you reverse all the pairs in r

\[\sim r \equiv \{ (b,a) \mid (a,b) \in r \} \]

• For example
 – ChildOf = $\sim\text{Parent}$
 – DescendantOf = $(\sim\text{Parent})^+$
Exercises

- What properties, i.e., function-ness, onto-ness, 1-1-ness, are preserved by these relation operators?
 - composition (;)
 - closure (⁺)
 - transpose (~)

- If an operator fails to preserve a property give an example
Acknowledgements

Some of these slides are adapted from

David Garlan’s slides from Lecture 3 of his course of Software Models entitled “Sets, Relations, and Functions”
(http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/)