Readings for this lecture

Chapters 7-8 of [Sipser 1996], 3rd edition.
Complexity measures

Definition (Time complexity of a Deterministic TM)
Let M be a deterministic TM that halts on all inputs. The running time or time complexity of M is a function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the maximum number of steps that M uses on any input of length n.

For nondeterministic TMs we change the definition of $f(n)$ to be “the maximum number of steps that N makes on any branch of its computation on any input of length $n.”

Definition (Space Complexity of a Deterministic TM)
Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of tape cells that M scans on any input of length n.

For nondeterministic TMs we change the definition of $f(n)$ to be “the maximum number of tape cells that M scans on any branch of its computation for any input of length $n.”
Asymptotic analysis

- Computing exact running time or used space of an algorithm is often a complex expression, we usually just estimate it.
- One convenient form of estimation is the so-called asymptotic analysis which determines cost w.r.t. large inputs.
- This is valid because the value of the highest order term dominates the value of the other terms on large inputs.

Consider the function \(f(n) = 6n^3 + 2n^2 + 10n + 100 \).

- Disregarding the coefficient 6, we say that \(f \) is asymptotically at most \(n^3 \).
- The asymptotic notation, or big-O notation, for describing this estimation is \(f(n) = \mathcal{O}(n^3) \).

- Big-O notation says that a function is asymptotically no more than another function.
- Small-O notation says that a function is asymptotically less than another function, e.g. \(\sqrt{n} = o(n) \).
How to show a language is in a given class?

- **P**: a polynomial time deterministic TM decider
- **NP**:
 - a polynomial time nondeterministic TM decider, or
 - a polynomial time deterministic verifier
- **NP-hard**: problems to which every $A \in \text{NP}$ problem can be polynomial time reduced

Definition (NP-complete)

A language B is **NP-complete** if it is NP and NP-hard.

- **PSPACE**: A polynomial space deterministic TM decider
- **NPSPACE**: A polynomial space nondeterministic TM decider
- **PSPACE-hard**: problems to which every PSPACE problem can be polynomial space reduced

Definition (PSPACE-complete)

A language B is **PSPACE-complete** if it is PSPACE and PSPACE-hard.
Other classes

\mathbf{L} is the class of languages that are decidable in logarithmic space on a DTM with a read-only input tape, i.e.

$$ L = \text{SPACE}(\log n) $$

\mathbf{NL} is the class of languages that are decidable in logarithmic space on a NTM with a read-only input tape, i.e.

$$ \mathbf{NL} = \text{NSPACE}(\log n) $$

In summary

$$ \mathbf{L} \subseteq \mathbf{NL} \subseteq \mathbf{P} \subseteq \mathbf{NP} \subseteq \text{PSPACE} = \text{NSPACE} \subseteq \text{EXPTIME} $$
P versus NP and NP-completeness

Is $P = NP$?

- This is one the greatest unsolved problems in theoretical computer science and contemporary mathematics.
- If P is equal to NP then any polynomially verifiable problem would be polynomially decidable.
- SAT is an NP-complete problem since it is NP and we can polynomially reduce any arbitrary NP problem into it.
- SAT was the first problem to be proven to be NP-complete.
- All problems in NP are at most as difficult as SAT.
- Providing a polynomial algorithm to SAT solves the P versus NP dilemma.
Closure properties

<table>
<thead>
<tr>
<th>Operation</th>
<th>Regular</th>
<th>Ctx-free</th>
<th>Det. Ctx-free</th>
<th>Decidable</th>
<th>Turing recog.</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>union</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>concatenation</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>star</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>intersection</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>intersect w/ regular</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>complement</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>reversal</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>shuffle</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
The \textit{PATH} problem

Does a directed path exists from two given nodes in a graph? Let

\[
\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}\]

\textbf{Theorem}

\[\text{PATH} \in \mathbf{P}\]

\textbf{Proof idea}

Construct a polynomial time algorithm that decides \textit{PATH}. Note that the brute-force algorithm that examines all potential paths in \(G \) and determines whether any is a direct path from \(s \) to \(t \) would not suffice.
A polynomial time algorithm for \textit{PATH}

\[M = \text{"On input string } \langle G, s, t \rangle \text{ where } G \text{ is a direct graph containing nodes } s \text{ and } t:\]

1. Place a mark on node \(s \)
2. Repeat until no additional nodes are marked:
 3. Scan all the edges of \(G \). If an edge \((a, b)\) is found going from a marked node \(a \) to an unmarked node \(b \), mark node \(b \)
4. If \(t \) is marked, \textit{accept}. Otherwise \textit{reject}."

\[\Box \]

\(\text{Stage 1 and 4 are executed only once and at most scan all the nodes, hence they are polynomially bound}\)

\(\text{Stage 3 runs at most } m \text{ times because each time except the last it marks an additional node of } G. \text{ Each run scans all the edges, which can be done polynomially on the number of edges. Hence, stages 2 and 3 are also polynomially bound}\)

\(\text{Therefore } M \text{ is a polynomial time algorithm for } \textit{PATH}\)
A polynomial time algorithm for \textit{PATH}

\(M = \) “On input string \(\langle G, s, t \rangle \) where \(G \) is a direct graph containing nodes \(s \) and \(t \):

1. Place a mark on node \(s \)

2. Repeat until no additional nodes are marked:

 3. Scan all the edges of \(G \). If an edge \((a, b)\) is found going from a marked node \(a \) to an unmarked node \(b \), mark node \(b \)

4. If \(t \) is marked, \textit{accept}. Otherwise \textit{reject}.”

\(\triangleright \) Stages 1 and 4 are executed only once and at most scan all the nodes, hence they are polynomially bound
A polynomial time algorithm for PATH

$M =$ “On input string $\langle G, s, t \rangle$ where G is a direct graph containing nodes s and t:

1. Place a mark on node s
2. Repeat until no additional nodes are marked:
 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b
4. If t is marked, accept. Otherwise reject.”

▷ Stages 1 and 4 are executed only once and at most scan all the nodes, hence they are polynomially bound

▷ Stage 3 runs at most m times because each time except the last it marks an additional node of G. Each run scans all the edges, which can be done polynomially on the number of edges. Hence, stages 2 and 3 are also polynomially bound
A polynomial time algorithm for **PATH**

\[
M = \text{"On input string } \langle G, s, t \rangle \text{ where } G \text{ is a direct graph containing nodes } s \text{ and } t:\n\begin{enumerate}
\item Place a mark on node } s
\item Repeat until no additional nodes are marked:
\begin{enumerate}
\item Scan all the edges of } G. \text{ If an edge } (a, b) \text{ is found going from a marked node } a \text{ to an unmarked node } b, \text{ mark node } b
\end{enumerate}
\item \text{If } t \text{ is marked, accept. Otherwise reject."
\end{enumerate}
\]

▷ Stages 1 and 4 are executed only once and at most scan all the nodes, hence they are polynomially bound

▷ Stage 3 runs at most } m \text{ times because each time except the last it marks an additional node of } G. \text{ Each run scans all the edges, which can be done polynomially on the number of edges. Hence, stages 2 and 3 are also polynomially bound

▷ Therefore } M \text{ is a polynomial time algorithm for } \textit{PATH}
The HAMPATH problem

Hamiltonian path problem:

- A Hamiltonian path in a directed graph G is a path that goes through each node of G exactly once

- Hamiltonian path problem consists of testing whether a directed graph G contains a Hamiltonian path connecting two specified nodes

$HAMPATH = \{ \langle G, s, t \rangle \mid G$ is a directed graph with a Hamiltonian path from s to $t \}$

It is easy to obtain an exponential algorithm to solve HAMPATH, however nobody knows whether a polynomial one exists.
Polynomial Verifiability of $HAMPATH$

The $HAMPATH$ problem has a feature called *polynomial verifiability* which is important for understanding its complexity:

> If a Hamiltonian path in a graph G is discovered (no matter how) we could easily convince someone else of its existence, simply by presenting it!

This is, *verifying* the existence of a Hamiltonian graph may be much easier than *determining* its existence.
An NTM deciding \textbf{HAMPATH}

\[N_1 = \text{"On input string } \langle G, s, t \rangle \text{ where } G \text{ is a directed graph containing nodes } s, t:} \]

1. Write a list of \(m \) numbers \(p_1, \ldots, p_m \) where \(m \) is the number of nodes in \(G \). Each \(p_i \) is nondeterministically selected between 1 and \(m \).
2. Check for repetitions in the list. If any are found, \textit{reject}
3. Check whether \(s = p_1 \) and \(t = p_m \). If either fails, \textit{reject}
4. For each \(i, 1 \leq i \leq m \), check whether \(p_1, p_{i+1} \) is an edge of \(G \). If any are not, \textit{reject}. Otherwise, \textit{accept}.”

Each stage clearly runs in nondeterministic polynomial time, thus so does \(N_1 \).
Examples on Space Complexity

▷ SAT can be solved with the linear space algorithm M_1, which means it is in PSPACE:

$M_1 = \text{“On input } ⟨\varphi⟩, \text{ where } \varphi \text{ is a Boolean formula:}\\
1. \text{For each truth assignment to the variables } x_1, \ldots, x_n \text{ of } \varphi:\n (a) \text{Evaluate } \varphi \text{ on that truth assignment; }\\ (b) \text{If } \varphi \text{ evaluates to 1, accept }\\
2. \text{If } \varphi \text{ never evaluates to 1, reject.”}\\

▷ $\overline{\text{ALL}}_{\text{NFA}} = \{⟨A⟩ | A \text{ is an NFA and } \mathcal{L}(A) \neq \Sigma^∗\}$

$\overline{\text{ALL}}_{\text{NFA}} \in \text{NSPACE}(n)$:

Proof idea

Construct N, a nondeterministic linear space algorithm that decides $\overline{\text{ALL}}_{\text{NFA}}$ by guessing a string that is rejected by NFA A and uses a linear space to keep track of which states the NFA could be in at a particular time. Note, this language is not know to NP or coNP.