Readings for this lecture

Chapter 5 of [Sipser 1996], 3rd edition. Section 5.1.
Suppose that one wants to find their way in a city. This would be easy if one had a city map. Hence, the previous problem is reduced to the problem of finding a city map.

Problem A: measuring the area of a circle, reduces to problem B: measuring r, the circle radius, which reduces to problem C: performing πr^2.

Problem A: solving a system of linear equations, reduces to problem B: triangulating a matrix.

Problem A: proving a set is uncountable, reduces to problem B: establishing a correspondence between the set and the set of reals.
Observations

▷ Reduction is a terminating process.

▷ When problem A is reduced to problem B, solving A cannot be harder than the sum of reduction and solving B, because a solution to B gives a solution to A.

▷ If A is reduced to B and B is decidable, then A is decidable.

▷ If A is undecidable and reducible to B then B is also undecidable.
Decidable problems: Methodology

For proving that a problem Q is decidable by reduction method, proceeding as follows:

1. Find a problem P known to be decidable
2. Assume that P is decided by a TM M_P
3. Use the TM M_P to construct a TM M_Q that solves Q:
 (a) Encode every instance q of the problem Q as an instance q_P of problem P
 (b) Use M_P to solve q_P and return the result

“Decidable” can be replaced by “Turing-recognizable” to show some problems are Turing-recognizable.
Undecidable problems: Methodology

A common strategy for proving that a problem P is undecidable is by reduction method, proceeding as follows:

1. Find a problem Q known to be undecidable
2. Assume that P is decided by a TM M_P
3. Use the TM M_P to construct a TM M_Q that solves Q:
 (a) Encode every instance q of the problem Q as an instance q_P of problem P
 (b) Use M_P to solve q_P
4. Since it is known that Q is undecidable, M_Q cannot exist. Hence, M_P cannot exist either and P is undecidable.

“Undecidable” can be replaced by “not Turing-recognizable” to show some problems are not Turing-recognizable.
Emptiness problem for TM

Theorem

The language $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof idea: reduction from A_{TM} to E_{TM}

- Assume that E_{TM} is decidable and let R be its TM decider.
- Show that a TM S can be constructed using R that decides A_{TM}
Emptiness problem for TM

Theorem

The language $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof idea: reduction from A_{TM} to E_{TM}

▷ Assume that E_{TM} is decidable and let R be its TM decider.

▷ Show that a TM S can be constructed using R that decides A_{TM}

▷ \textit{Bad idea}: Run R on $\langle M \rangle$. If it accepts then $L(M) = \emptyset$, so M does not accept w; otherwise, $L(M) \neq \emptyset$, which does not entail that M accepts w
Emptiness problem for TM

Theorem

The language $E_{TM} = \{\langle M \rangle \mid M$ is a TM and $L(M) = \emptyset \}$ is undecidable.

Proof idea: reduction from A_{TM} to E_{TM}

- **Assume that E_{TM} is decidable and let R be its TM decider.**
- **Show that a TM S can be constructed using R that decides A_{TM}**
- **Bad idea**: Run R on $\langle M \rangle$. If it accepts then $L(M) = \emptyset$, so M does not accept w; otherwise, $L(M) \neq \emptyset$, which does not entail that M accepts w
- **Good idea**: run R on a modification $\langle M_1 \rangle$ of $\langle M \rangle$ that guarantees that M_1 rejects all strings except w. That is

$$L(M_1) = \begin{cases} \{w\} & \text{if } w \in L(M) \\ \emptyset & \text{otherwise} \end{cases}$$

R can test then if $L(M_1) = \emptyset$ to determine whether $w \in L(M)$.

Proving E_{TM} is undecidable

The modified machine M_1

$M_1 =$ “On input x:

1. If $x \neq w$, reject
2. If $x = w$, run M on input w and if M accepts, accept.”

▷ Note that M_1 has w “hardcoded” as part of its description.
Proving E_{TM} is undecidable

The modified machine M_1

$M_1 = \text{"On input } x:\text{
1. If } x \not= w, \text{ reject}
2. If } x = w, \text{ run } M \text{ on input } w \text{ and if } M \text{ accepts, accept."}$

◿ Note that M_1 has w “hardcoded” as part of its description.

The machine S

$S = \text{"On input } \langle M, w \rangle, \text{ in which } M \text{ is a TM and } w \text{ a string:}
1. \text{Construct } M_1 \text{ from } \langle M, w \rangle
2. \text{Run } R \text{ on input } \langle M_1 \rangle
3. \text{If } R \text{ accepts, reject; if } R \text{ rejects, accept."}$

◿ If E_{TM} was decidable then A_{TM} would be decidable. Since A_{TM} is undecidable, so is E_{TM}.
Can a TM recognize a language recognized by a simpler computational model, such as a regular language?

For example, $REGULAR_{TM}$ is the problem of testing whether a given TM has an equivalent finite automaton.

This is the same as testing whether a TM recognizes a regular language:

$$REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \mathcal{L}(M) \text{ is regular} \}$$
Theorem

\(\text{REGULAR}_{\text{TM}} \) is undecidable.

Proof idea: reduction to decidability of \(A_{\text{TM}} \)

Let \(R \) be a decider for \(\text{REGULAR}_{\text{TM}} \). Build decider \(S \) for \(A_{\text{TM}} \) which leverages \(R \).
TM and regular languages

Theorem

$\text{REGULAR}_{\text{TM}}$ is undecidable.

Proof idea: reduction to decidability of A_{TM}

Let R be a decider for $\text{REGULAR}_{\text{TM}}$. Build decider S for A_{TM} which leverages R.

- On input $\langle M, w \rangle$, S modifies M so that the resulting TM M' recognizes a regular language if and only if M accepts w:

 ▶️ M' recognizes the non-regular language $\{0^n1^n \mid n \geq 0\}$ (chosen arbitrarily) if M does not accept w.

 ▶️ M' recognizes the regular language Σ^* (chosen arbitrarily) if M accepts w.
TM and regular languages

Theorem

\textit{REGULAR}_TM is undecidable.

Proof idea: reduction to decidability of \textit{A}_TM

Let \(R \) be a decider for \textit{REGULAR}_TM. Build decider \(S \) for \textit{A}_TM which leverages \(R \).

\(\vdash \) On input \(\langle M, w \rangle \), \(S \) modifies \(M \) so that the resulting TM \(M' \) recognizes a regular language if and only if \(M \) accepts \(w \):

- \(M' \) recognizes the non-regular language \(\{0^n1^n \mid n \geq 0\} \) (chosen arbitrarily) if \(M \) does not accept \(w \)
- \(M' \) recognizes the regular language \(\Sigma^* \) (chosen arbitrarily) if \(M \) accepts \(w \).
A decider S for A_{TM} based on a decider R for $\text{REGULAR}_{\text{TM}}$ is as follows:

$S =$ “On input $\langle M, w \rangle$ in which a M is a TM and w a string:

1. Build the following TM M':

 $M' =$ “On input x:

 1. If x has the form $0^n 1^n$, accept
 2. Otherwise, run M on w and if M accepts w, accept.”

2. Run R on $\langle M' \rangle$.

3. If R accepts, accept; if R rejects, reject.”

Since A_{TM} is undecidable, R cannot exist, therefore $\text{REGULAR}_{\text{TM}}$ is undecidable. Moreover, the same holds for CFL_{TM}, $\text{DECIDABLE}_{\text{TM}}$, etc.”
TM and regular languages

A decider S for A_{TM} based on a decider R for $REGULAR_{TM}$ is as follows:

\[S = "On \text{ input } \langle M, w \rangle \text{ in which a } M \text{ is a TM and } w \text{ a string:} \]

1. Build the following TM M':
 \[M' = "On \text{ input } x:\]
 1. If x has the form $0^n 1^n$, accept
 2. Otherwise, run M on w and if M accepts w, accept."

2. Run R on $\langle M' \rangle$.

3. If R accepts, accept; if R rejects, reject."

Since A_{TM} is undecidable, R cannot exist, therefore $REGULAR_{TM}$ is undecidable.
TM and regular languages

A decider S for A_{TM} based on a decider R for $REGULAR_{TM}$ is as follows:

$S =$ “On input $\langle M, w \rangle$ in which a M is a TM and w a string:

1. Build the following TM M':
 M' = “On input x:
 1. If x has the form 0^n1^n, accept
 2. Otherwise, run M on w and if M accepts w, accept.”

2. Run R on $\langle M' \rangle$.

3. If R accepts, accept; if R rejects, reject.”

Since A_{TM} is undecidable, R cannot exist, therefore $REGULAR_{TM}$ is undecidable.

Moreover, the same holds for CFL_{TM}, $DECIDABLE_{TM}$, etc.
Rice’s Theorem

Determining any property of the languages recognized by Turing machines is undecidable.

Theorem

Let P be the language of TMs descriptions where P fulfills the following conditions:

1. P is nontrivial, i.e. it contains some, but not all, TM descriptions. Formally: there exist TMs M_1 and M_2 s.t. $\langle M_1 \rangle \in P$ and $\langle M_2 \rangle \notin P$.

2. P is a property of the TMs language. Formally: for any TMs M_1 and M_2, if $L(M_1) = L(M_2)$ then $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$, i.e. membership of a TM M in P depends only on the language of M.

P is undecidable.
Other reductions

Sometimes reducing from other undecidable languages other than A_{TM}, such as E_{TM}, may be more convenient:

Theorem

$E_{Q_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

Proof idea: reduction from E_{TM} to $E_{Q_{TM}}$
Sometimes reducing from other undecidable languages other than A_{TM}, such as E_{TM}, may be more convenient:

Theorem

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

Proof idea: reduction from E_{TM} to EQ_{TM}

Let R be the decider of EQ_{TM}. A decider S E_{TM} based on R is as follows:

$S =$ “On input $\langle M \rangle$ in which a M is a TM:

1. Run R on input $\langle M, M' \rangle$, in which M' is a TM that rejects all inputs
2. If R accepts, accept; if R rejects, reject.”

Since E_{TM} is undecidable, so must be EQ_{TM}.