Chapter 4 of [Sipser 1996], 3rd edition. Section 4.2.
Computing as we know it is limited in a fundamental way

- There are problems which are algorithmically unsolvable.

- We will cover several computationally unsolvable problems and how to prove unsolvability.

- We start with the halting problem.
Halting problem of TMs

- Whether an arbitrary TM will halt on an arbitrary input

- It is also the membership problem of TMs:
 \[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]

- While \(A_{DFA} \) and \(A_{CFG} \) are decidable, \(A_{TM} \) is not.
Theorem

A_{TM} is undecidable.

- Before we proceed to the proof, we first establish that A_{TM} is Turing-recognizable

- This proves that recognizers are more powerful than deciders

- Requiring that a TM halts on all inputs restricts its expressive power.
A recognizer for A_{TM}

The following TM U recognizes A_{TM}

$U =$“On input string $\langle M, w \rangle$, where M is a TM and w is a string:

1. Simulate M on input w

2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.”

U is an universal Turing machine, which can simulate any other Turing machine from its description.
A recognizer for A_{TM}

The following TM U recognizes A_{TM}

$U =$ “On input string $\langle M, w \rangle$, where M is a TM and w is a string:

1. Simulate M on input w
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.”

U is an universal Turing machine, which can simulate any other Turing machine from its description.

Halting

- Note that U is not a decider, since it possibly loops indefinitely.
- The name “halting problem” comes from the impossibility of U determining whether M ever halts.
How to prove undecidability

- The proof of undecidability of the TM membership problem uses Georg Cantor (1873) technique called *diagonalization*.

- Cantor’s problem was to measure the size of infinite sets.

- The size of finite sets is measured by counting the number of their elements.

- The size of infinite sets cannot be measured by counting their elements since this procedure does not halt.
Examples of infinite sets

- The set of strings over \{0, 1\} is infinite
- So is the set \(\mathbb{N}\) of natural numbers\(^1\)
- The set \(\mathbb{E}\) of all even natural numbers is also infinite
- How can we compare these sets?

\(^1\)Here we believe that 0 is a natural number.
Examples of infinite sets

- The set of strings over \{0, 1\} is infinite
- So is the set \(\mathbb{N}\) of natural numbers\(^1\)
- The set \(\mathbb{E}\) of all even natural numbers is also infinite
- How can we compare these sets?

Cantor’s solution

- Two sets have the same size if their elements can be paired (i.e., you can establish a bijection, a one-to-one correspondence)
- Since this method does not rely on counting it serves both finite and infinite sets

\(^1\)Here we believe that 0 is a natural number.
Correspondence

For two sets A and B and a function $f : A \rightarrow B$

▷ f is one-to-one if it never maps two different elements of A into the same element of B, i.e. f is injective, i.e. $f(a) \neq f(b)$ whenever $a \neq b$

▷ f is onto if it hits every element of B, i.e. f is surjective, i.e. $orall y \in B. \exists x \in A. f(x) = y$

▷ f is called a correspondence if it is both one-to-one and onto

Two sets A and B have the same size if there is a correspondence $f : A \rightarrow B$
Example Correspondences

Let \mathbb{N} be the set of natural numbers and \mathbb{E} the set of even natural numbers.

Intuitively one may believe that $\#(\mathbb{N}) > \#(\mathbb{E})$ since $\mathbb{E} \subset \mathbb{N}$. However, using Cantor’s method we can show that \mathbb{N} and \mathbb{E} have the same size by constructing the correspondence $f : \mathbb{N} \rightarrow \mathbb{E}$ defined by $f(n) = 2n$.

Definition
A set is countable if it is finite or it has the same size as \mathbb{N}.
Example Correspondences

▷ Let \(\mathbb{N} \) be the set of natural numbers and \(\mathbb{E} \) the set of even natural numbers.

▷ Intuitively one may believe that \(\#(\mathbb{N}) > \#(\mathbb{E}) \) since \(\mathbb{E} \subseteq \mathbb{N} \). However, using Cantor’s method we can show that \(\mathbb{N} \) and \(\mathbb{E} \) have the same size by constructing the correspondence \(f : \mathbb{N} \rightarrow \mathbb{E} \) defined by \(f(n) = 2n \).

Definition

A set is *countable* if it is finite or it has the same size as \(\mathbb{N} \).
A complex correspondence

Let \mathbb{Q} be the set of positive rational numbers, i.e. $\mathbb{Q} = \{ \frac{m}{n} \mid m \in \mathbb{N}, n \in \mathbb{N}^+ \}$

- Intuitively, \mathbb{Q} seems to be much larger than \mathbb{N}
- Yet we can show that these two sets have the same size by constructing a correspondence

Correspondence $\mathbb{Q} \rightarrow \mathbb{N}$

1. Put \mathbb{N} on two axes
2. Line i contains all rationals that have numerator i, i.e. \[\left\{ \frac{i}{j} \mid i \in \mathbb{N} \text{ fixed}, j \in \mathbb{N}^+ \right\} \]
3. Column j contains all rationals that have denominator j, i.e. \[\left\{ \frac{i}{j} \mid i \in \mathbb{N}, j \in \mathbb{N}^+ \text{ fixed} \right\} \]
4. Number $\frac{i}{j}$ occurs in i-th row and j-th column
Bad idea: list first elements of a line or a column. Lines and columns are labeled by natural numbers, therefore this would never end.

Good idea (by Cantor): use the diagonals.

1. First diagonal contains $0 \over 1$
2. Continue the list with the elements of the next diagonal skipping repetitions: $1 \over 1$, $2 \over 1$, $1 \over 2$, …
3. Elements that may generate repetitions, such as $i \over i$, which would generate a copy of $1 \over 1$, or $0 \over i$, which would be a copy of $0 \over 1$.
Listing rational numbers

- **Bad idea**: list first elements of a line or a column. Lines and columns are labeled by natural numbers, therefore this would never end.

- **Good idea** (by Cantor): use the diagonals.
 1. First diagonal contains $\frac{0}{1}$
 2. Continue the list with the elements of the next diagonal skipping repetitions: $\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \ldots$
 3. Elements that may generate repetitions, such as $\frac{i}{i}$, which would generate a copy of $\frac{1}{1}$, or $\frac{0}{i}$, which would be a copy of $\frac{0}{1}$

More infinite countable sets

- $\mathbb{N} \times \mathbb{N}$
- \mathbb{N}^k, for any $k \in \mathbb{N}$
- Σ^*
- Any subset of a countable set is also countable
Uncountable sets

An infinite set for which no correspondence with \(\mathbb{N} \) can be established is denoted uncountable.

Theorem

The set of real numbers is uncountable.

Proof idea

We can show this using Cantor’s diagonalization method.
No correspondence exists between \(\mathbb{N} \) and \(\mathbb{R} \)

- Suppose that such a correspondence \(f : \mathbb{N} \rightarrow \mathbb{R} \) exists and deduce a contradiction showing that \(f \) fails to work properly.
- We construct an element \(x \in \mathbb{R} \) that cannot be the image of an \(n \in \mathbb{N} \).
- We must show that \(x \neq f(n) \) for every \(n \in \mathbb{N} \).
No correspondence exists between \mathbb{N} and \mathbb{R}

- Suppose that such a correspondence $f : \mathbb{N} \to \mathbb{R}$ exists and deduce a contradiction showing that f fails to work properly.
- We construct an element $x \in \mathbb{R}$ that cannot be the image of an $n \in \mathbb{N}$
- We must show that $x \neq f(n)$ for every $n \in \mathbb{N}$

Building x

Construct $x \in (0, 1)$ by the following procedure:

$$x = 0.d_0d_1d_2d_3d_4\ldots$$

such that $\forall i \in \mathbb{N}$, d_i is a digit different from the i-th digit of $f(i)$.
No correspondence exists between \(\mathbb{N} \) and \(\mathbb{R} \)

- Suppose that such a correspondence \(f : \mathbb{N} \to \mathbb{R} \) exists and deduce a contradiction showing that \(f \) fails to work properly.
- We construct an element \(x \in \mathbb{R} \) that cannot be the image of an \(n \in \mathbb{N} \)
- We must show that \(x \neq f(n) \) for every \(n \in \mathbb{N} \)

Building \(x \)

Construct \(x \in (0, 1) \) by the following procedure:

\[
x = 0.d_0d_1d_2d_3d_4\ldots
\]

such that \(\forall i \in \mathbb{N}, d_i \) is a digit different from the \(i \)-th digit of \(f(i) \).

- \(x \) is different from all real numbers in the image of \(f \) by at least one digit
- Therefore, since \(x \in \mathbb{R} \) and \(\forall n \in \mathbb{N}. x \neq f(n) \), the function \(f \) is not surjective, so it cannot be a correspondence
- The “diagonalization” comes from using the diagonal of the table with entries \((n,f(n)), n \in \mathbb{N} \) to build \(x \).
Some languages are not Turing-recognizable

- There are uncountably many languages yet only countably many Turing machines
Some languages are not Turing-recognizable

- There are uncountably many languages yet only countably many Turing machines

Set of all languages is uncountable

1. The set \mathcal{B} of all infinite binary strings is uncountable
2. There is a correspondence between the set of all languages \mathcal{L} and \mathcal{B}

Set of all TMs is countable

1. Σ^* is countable
2. Each TM M has an encoding $\langle M \rangle$ into a string

- Since each Turing machine recognizes a single language and there are more languages than TMs, some languages are not recognized by any TM

- Such languages are not Turing recognizable
Proving the Halting problem is undecidable

We assume that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is decidable:

- Let H be a decider for A_{TM}

 \[
 H(\langle M, w \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ accepts } w \\
 \text{reject} & \text{if } M \text{ does not accept } w
 \end{cases}
 \]

- Let D be a TM that uses H as a subroutine: it calls H to determine how M behaves on the input $\langle M \rangle$ and outputs the opposite.

- $D =$ “On input string $\langle M \rangle$, where M is a TM:
 1. Run H on input $\langle M, \langle M \rangle \rangle$
 2. Output the opposite of what H outputs, i.e. if H accepts, reject; if H rejects, accept.”

- What about running D on $\langle D \rangle$?
Proving the Halting problem is undecidable

We assume that \(A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \) is decidable:

▷ Let \(H \) be a decider for \(A_{TM} \)

\[
H(\langle M, w \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ accepts } w \\
 \text{reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

▷ Let \(D \) be a TM that uses \(H \) as a subroutine: it calls \(H \) to determine how \(M \) behaves on the input \(\langle M \rangle \) and outputs the opposite.

▷ \(D = \)“On input string \(\langle M \rangle \), where \(M \) is a TM:

1. Run \(H \) on input \(\langle M, \langle M \rangle \rangle \)
2. Output the opposite of what \(H \) outputs, i.e. if \(H \) accepts, \(\text{reject} \); if \(H \) rejects, \(\text{accept} \).”

▷ What about running \(D \) on \(\langle D \rangle \)?

\[
D(\langle D \rangle) = \begin{cases}
 \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\
 \text{reject} & \text{if } D \text{ accepts } \langle D \rangle
\end{cases}
\]

\(D \) cannot exist, so neither can \(H \)!
The use of diagonalization can be seen if we construct a table of all Turing Machines M_0, \ldots, M_n (rows) running on encoded Turing Machines $\langle M_0 \rangle, \ldots, \langle M_n \rangle$ (columns) as inputs:

Entries (i,j) are accept if M_i accepts $\langle M_j \rangle$, reject otherwise: $H(\langle M_i, \langle M_j \rangle \rangle)$
The use of diagonalization can be seen if we construct a table of all Turing Machines M_0, \ldots, M_n (rows) running on encoded Turing Machines $\langle M_0 \rangle, \ldots, \langle M_n \rangle$ (columns) as inputs:

Entries (i,j) are accept if M_i accepts $\langle M_j \rangle$, reject otherwise: $H(\langle M_i, \langle M_j \rangle \rangle)$

When we add D to the table, a contradiction occurs at $\langle D, \langle D \rangle \rangle$.
Where is the diagonalization?

The use of diagonalization can be seen if we construct a table of all Turing Machines M_0, \ldots, M_n (rows) running on encoded Turing Machines $\langle M_0 \rangle, \ldots, \langle M_n \rangle$ (columns) as inputs:

Entries (i, j) are *accept* if M_i accepts $\langle M_j \rangle$, *reject* otherwise: $H(\langle M_i, \langle M_j \rangle \rangle)$

When we add D to the table, a contradiction occurs at $\langle D, \langle D \rangle \rangle$.

D computes the opposite of the diagonal entries, but on $\langle D, \langle D \rangle \rangle$ it must be the opposite of itself.
A Turing-unrecognizable language

Definition
A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem
A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Corollary
For any undecidable language, either the language or its complement is not Turing-recognizable.

Corollary
A_{TM} is not Turing-recognizable.