Readings for this lecture

Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.
Abstraction of Problems

- **Data**: abstracted as a word in a given alphabet
 - Σ: alphabet, a finite, non-empty set of symbols
 - Σ^*: all the words of finite length built up using Σ

- **Conditions**: abstracted as a set of words, called *language*
 - Any subset $L \subseteq \Sigma^*$

- **Unknown**: Implicitly a Boolean variable: `true` if a word is in the language, `false` otherwise
 - Given $w \in \Sigma^*$ and $L \subseteq \Sigma^*$, does $w \in L$?
Finite Automata

The simplest computational model is called a *finite state machine* or a *finite automaton*

Representations:

- Graphical
- Tabular
- Mathematical
Computation of a Finite Automaton

▷ The automaton receives the input symbols one by one from left to right, changing the “active” state

▷ After reading each symbol, the “active state” moves from one state to another along the transition that has that symbol as its label

▷ When the last symbol of the input is read the automaton produces the output: *accept* if the “active state” is in an accept state, or *reject* otherwise
Applications

▷ Finite automata are popular in parser construction of compilers

▷ Finite automata and their probabilistic counterparts, *Markov chains*, are useful tools for pattern recognition
 Example: speech processing and optical character recognition

▷ Markov chains have been used to model and predict price changes in financial applications
A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) in which:

- \(Q\) is a finite set called the *states*
- \(\Sigma\) is a finite set called the *alphabet*
- \(\delta : Q \times \Sigma \to Q\) is the transition function
- \(q_0 \in Q\) is the *start state*, also called *initial stat*
- \(F \subseteq Q\) is the set of *accepted states*, also called the *final states*
If L is the set of all strings that a finite automaton M accepts, we say that L is the *language of the machine* M and write $\mathcal{L}(M) = L$.

An automaton may accept several strings, but it always recognizes only one language.

If a machine accepts no strings, it still recognizes one language, namely the empty language \emptyset.
Formal Definition of Acceptance

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and $w = a_0 \ldots a_n$ be a string over Σ

Then M acceptw if a sequence of states r_0, \ldots, r_n exists in Q such that:

1. $r_0 = q_0$
2. $\delta(r_i, a_{i+1}) = r_{i+1}$ for $i = 0, 1, \ldots, n - 1$
3. $r_n \in F$

Condition (1) says where the machine starts

Condition (2) says that the machine goes from state to state according to its transition function δ

Condition (3) says when the machine accepts its input: if it ends up in an accept state
Regular Languages

We say that a finite automaton M recognizes the language L if
$L = \{ w \mid M \text{ accepts } w \}$

Definition: A language is called *regular language* if there exists a finite automaton that recognizes it.
Whether it be of automaton or artwork, design is a creative process. Consequently it cannot be reduced to a simple recipe or formula.

The approach:

- Identify the finite pieces of information you need to solve the problem. These are the states
- Identify the condition (alphabet) to change from one state to another
- Identify the start and final states
- Add missing transitions
Let A and B be languages. We define regular operations \textit{union}, \textit{concatenation}, and \textit{star} as follows

\begin{itemize}
 \item \textbf{Union}: $A \cup B = \{ x \mid x \in A \lor x \in B \}$
 \item \textbf{Concatenation}: $A \circ B = \{ xy \mid x \in A \land y \in B \}$
 \item \textbf{Star}: $A^* = \{ x_1 \ldots x_k \mid k \geq 0 \land x_i \in A, \ 0 \leq i \leq k \}$
\end{itemize}

\textbf{Note:}

1. $\epsilon \in A^*$, no matter what A is
2. A^+ denotes $A \circ A^*$
A regular expression (RE in short) is a string of symbols that describes a regular language.

▷ Three base cases:
 ▶ For any $a \in \Sigma$, a is a regular expression denoting the language $\{a\}$
 ▶ ϵ is a regular expression denoting the language $\{\epsilon\}$
 ▶ \emptyset is a regular expression denoting the language \emptyset;

▷ Three recursive cases: If r_1 and r_2 are regular expressions denoting languages L_1 and L_2, respectively, then
 ▶ **Union**: $r_1 \cup r_2$ denotes $L_1 \cup L_2$
 ▶ **Concatenation**: $r_1 r_2$ denotes $L_1 \circ L_2$
 ▶ **Star**: r_1^* denotes L_1^*
Some useful notation

Let r be a regular expression:

▫ The string r^+ represents rr^*, and it also holds that $r^+ \cup \{\epsilon\} = r^*$

▫ The string r^k represents $\underbrace{rr \ldots r}_{k \text{ times}}$

▫ Recall that the symbol Σ represents the alphabet $\{a_1, \ldots, a_k\}$

▫ As with automata, the language represented by r is denoted $\mathcal{L}(r)$
Precedence Rules

▷ The star (\(\ast\)) operation has the highest precedence

▷ The concatenation (\(\circ\)) operation is second on precedence order

▷ The union (\(\cup\) or \(+\)) operation is the least preferred

▷ Parenthesis can be omitted using these rules
Examples

\[0^*10^* = \{ w | w \text{ contains a single 1} \} \]

\[\Sigma^*1^*\Sigma^* = \{ w | w \text{ has at least a single 1} \} \]

\[\Sigma^* (101) \Sigma^* = \{ w | w \text{ contains 101 as a substring} \} \]

\[1^* (01 +)^* = \{ w | \text{every 0 in } w \text{ is followed by at least a single 1} \} \]

\[(\Sigma\Sigma)^* = \{ w | w \text{ is of even length} \} \]

\[0^*10^* \cup 1^*0^* \cup 0^* \cup 1^* - \{ \text{all words starting and ending with the same letter} \} \]

\[01^* \cup 1^* - \{ \text{all strings of forms } 1, 11, 1 \ldots \text{ and } 0, 1, 11, 1 \ldots \} \]

\[R \emptyset \emptyset^* - \emptyset \]

\[\emptyset^* \emptyset^* - \{ \epsilon \} \]
Examples

\[0^*10^* = \{ w \mid w \text{ contains a single } 1 \} \]
\[\Sigma^*1\Sigma^* = \]
Examples

\[0^* 10^* = \{ w \mid w \text{ contains a single 1} \} \]
\[\Sigma^* 1 \Sigma^* = \{ w \mid w \text{ has at least a single 1} \} \]
\[\Sigma^* (101) \Sigma^* = \]
Examples

\[0^*10^* = \{w \mid w \text{ contains a single } 1\} \]
\[\Sigma^*1\Sigma^* = \{w \mid w \text{ has at least a single } 1\} \]
\[\Sigma^*(101)\Sigma^* = \{w \mid w \text{ contains } 101 \text{ as a substring}\} \]
\[1^*(01^+)^* = \]
Examples

\[0^*10^* = \{ w \mid w \text{ contains a single } 1 \} \]
\[\Sigma^*1\Sigma^* = \{ w \mid w \text{ has at least a single } 1 \} \]
\[\Sigma^*(101)\Sigma^* = \{ w \mid w \text{ contains 101 as a substring} \} \]
\[1^*(01^+)^* = \{ w \mid \text{ every 0 in } w \text{ is followed by at least a single } 1 \} \]
\[(\Sigma \Sigma)^* = \]
Examples

\[0^*10^* = \{ w \mid w \text{ contains a single } 1 \} \]
\[\Sigma^*1\Sigma^* = \{ w \mid w \text{ has at least a single } 1 \} \]
\[\Sigma^*(101)\Sigma^* = \{ w \mid w \text{ contains } 101 \text{ as a substring} \} \]
\[1^*(01^+)^* = \{ w \mid \text{ every } 0 \text{ in } w \text{ is followed by at least a single } 1 \} \]
\[(\Sigma\Sigma)^* = \{ w \mid w \text{ is of even length} \} \]
Examples

\[
0^*10^* = \{ w \mid w \text{ contains a single 1} \}
\]
\[
\Sigma^*1\Sigma^* = \{ w \mid w \text{ has at least a single 1} \}
\]
\[
\Sigma^*(101)\Sigma^* = \{ w \mid w \text{ contains 101 as a substring} \}
\]
\[
1^*(01^+)^* = \{ w \mid \text{ every 0 in } w \text{ is followed by at least a single 1} \}
\]
\[
(\Sigma\Sigma)^* = \{ w \mid w \text{ is of even length} \}
\]

\[
0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1
\]

all words starting and ending with the same letter

\[
(0 \cup \varepsilon)1^* = 01^* \cup 1^*
\]

−
Examples

0*10* = \{ w | w contains a single 1 \}
Σ*1Σ* = \{ w | w has at least a single 1 \}
Σ*(101)Σ* = \{ w | w contains 101 as a substring \}
1*(01^+) = \{ w | every 0 in w is followed by at least a single 1 \}
(ΣΣ)^* = \{ w | w is of even length \}

0Σ*0∪1Σ*1∪0∪1 − all words starting and ending with the same letter
(0∪ε)1* = 01*∪1* − all strings of forms 1, 11, 1...1 and 0, 1, 11, 1...1
R∅ −
Examples

\[\Sigma^* 1 \Sigma^* = \{ w \mid w \text{ has at least a single } 1 \} \]
\[\Sigma^* (101) \Sigma^* = \{ w \mid w \text{ contains } 101 \text{ as a substring} \} \]
\[1^* (01^+)^* = \{ w \mid \text{ every } 0 \text{ in } w \text{ is followed by at least a single } 1 \} \]
\[(\Sigma \Sigma)^* = \{ w \mid w \text{ is of even length} \} \]

0\Sigma^* 0 \cup 1 \Sigma^* 1 \cup 0 \cup 1 \quad \text{— all words starting and ending with the same letter}
(0 \cup \epsilon)1^* = 01^* \cup 1^* \quad \text{— all strings of forms } 1, 11, 1 \ldots 1 \text{ and } 0, 1, 11, 1 \ldots 1
R \emptyset \quad \text{— } \emptyset
\emptyset^* \quad \text{— } \emptyset
Examples

\[0^*10^* = \{ w \mid w \text{ contains a single } 1 \} \]
\[\Sigma^*1\Sigma^* = \{ w \mid w \text{ has at least a single } 1 \} \]
\[\Sigma^*(101)\Sigma^* = \{ w \mid w \text{ contains } 101 \text{ as a substring} \} \]
\[1^*(01^+)^* = \{ w \mid \text{ every } 0 \text{ in } w \text{ is followed by at least a single } 1 \} \]
\[(\Sigma\Sigma)^* = \{ w \mid w \text{ is of even length} \} \]

\[0^*0 \cup 1^*1 \cup 0 \cup 1 = \text{all words starting and ending with the same letter} \]
\[(0 \cup \epsilon)1^* = 01^* \cup 1^* = \text{all strings of forms } 1, 11, 1 \ldots 1 \text{ and } 0, 1, 11, 1 \ldots 1 \]
\[R\emptyset = \emptyset \]
\[\emptyset^* = \{ \epsilon \} \]