Datatypes with Shared Selectors

Andrew Reynolds1, Arjun Viswanathan1, Haniel Barbosa1, Cesare Tinelli1 and Clark Barrett2

1University of Iowa, Iowa City, U.S.A.
2Department of Computer Science, Stanford University

IJCAR 2018
Introductory example

\[\text{Tree} = N_1(\text{Int}, \text{Tree}, \text{Tree}) | N_2(\text{Int}, \text{Int}, \text{Tree}, \text{Tree}) | L(\text{Bool}, \text{Int}) \]

▷ Subfields are accessed with selectors, which are associated with each constructor, e.g.

\[
\begin{align*}
S^{N_1,1} : & \text{Tree} \rightarrow \text{Int} \\
S^{N_1,2} : & \text{Tree} \rightarrow \text{Tree} \\
S^{N_1,3} : & \text{Tree} \rightarrow \text{Tree}
\end{align*}
\]

▷ Each constructor is associated with a tester predicate, i.e.

\[
is_{N_1}, \ is_{N_2}, \ is_{L}
\]

▷ Given a term \(t \) of type \text{Tree} the following clause set states

\[
\{ \neg is_{N_1}(t) \lor S^{N_1,1}(t) \geq 0, \neg is_{L}(t) \lor S^{L,2}(t) \geq 0 \}
\]

▶ when \(t \) has top symbol \(N_1 \), its first subfield is non-negative

▶ when \(t \) has top symbol \(L \), its second subfield is non-negative
Why share selectors?

Tree = \(N_1(\text{Int}, \text{Tree}, \text{Tree}) \mid N_2(\text{Int}, \text{Int}, \text{Tree}, \text{Tree}) \mid L(\text{Bool}, \text{Int}) \)

- Consider a different kind of selector symbol
 \(S^{\text{Int}, 1} : \text{Tree} \rightarrow \text{Int} \)
 which maps each value of type \(\text{Tree} \) to its \textit{first} subfield of type \(\text{Int} \)

- Mapping is \textit{independent} of the term’s top constructor
Why share selectors?

\[
\text{Tree} = N_1(\text{Int}, \text{Tree}, \text{Tree}) \mid N_2(\text{Int}, \text{Int}, \text{Tree}, \text{Tree}) \mid L(\text{Bool}, \text{Int})
\]

- Consider a different kind of selector symbol
 \[
 S^{\text{Int}, 1} : \text{Tree} \rightarrow \text{Int}
 \]
 which maps each value of type \text{Tree} to its \text{first} subfield of type \text{Int}

- Mapping is \text{independent} of the term’s top constructor

- The previous clause set can be written using a single \text{shared} selector
 \[
 \{ \neg \text{isN}_1(t) \lor S^{\text{Int}, 1}(t) \geq 0, \neg \text{isL}(t) \lor S^{\text{Int}, 1}(t) \geq 0 \}
 \]

- Note that the arithmetic literal is now the same in both clauses

- The \text{Tree} datatype requires only five \text{shared} selectors instead of nine standard selectors
Outline

▷ Theory of Datatypes with Shared Selectors

▷ Application: Syntax-Guided Synthesis (SyGuS)
 ▶ Overview of the SyGuS problem
 ▶ Using Shared Selectors for Syntax-Guided Synthesis

▷ Evaluation
 ▶ SyGuS
 ▶ SMT-LIB
Theory of Datatypes with Shared Selectors
Theory of Datatypes

▷ Specification

```
datatype δ = C_1([S^{C_1,1}_δ : τ_1, \ldots, [S^{C_1,n_1}_δ : τ_{n_1}]) | \ldots | C_m(\ldots)
```

s.t. \(S^{C,k}_δ : δ \rightarrow τ_k \)

▷ Besides basic properties of Distinctness, Injectivity, Exhaustiveness, and Acyclicity, datatypes also respect

\[
\forall x_1, \ldots, x_n. S^{C,k}_δ(C(x_1, \ldots, x_n)) \approx x_k \quad (Standard \ selection)
\]
Theory of Datatypes with Shared Selectors (\mathcal{D})

- Extend the signature with *shared selectors* $S^{\tau,k}_\delta$ for each datatype δ and type τ in \mathcal{D} and each natural number k.

- $S^{\tau,k}_\delta$ when applied to a δ-term $C(t_1,\ldots,t_n)$ returns the k-th argument of C that has type τ, if one exists.

- Formally represented with a partial function stoa, e.g. for

 \[
 \text{Tree} = N_1(\text{Int}, \text{Tree}, \text{Tree}) \mid N_2(\text{Int}, \text{Int}, \text{Tree}, \text{Tree}) \mid L(\text{Bool}, \text{Int})
 \]

 - $\text{stoa}(1, \text{Int}, N_1) = 1$, $\text{stoa}(2, \text{Tree}, N_1) = 3$
 - $\text{stoa}(2, \text{Int}, N_1)$, $\text{stoa}(1, \text{Bool}, N_2)$ are undefined.

- Datatypes in \mathcal{D} also respect the property

 $$\forall x_1, \ldots, x_n. \ S^{\tau,k}_\delta(C(x_1, \ldots, x_n)) \approx x_i, \ 	ext{where} \ i = \text{stoa}(k, \tau, C)$$
From standard selectors to shared selectors

▷ We reduce arbitrary constraints to constraints with only shared selectors

▷ Thus our calculus only needs to account for shared selectors

▷ We prove that the resulting reduction is equisatisfiable to the original constraints

▷ Reduction can be applied as a preprocessing step in an implementation of \(\mathcal{D} \)
Similar to previous calculi from [Barrett et al. 2007, Reynolds and Blanchette 2015]

Tableau-like calculus to decide the \mathcal{D}-satisfiability of a set of quantifier-free constraints E

Our main modification is in the SPLIT rule, which unrolls terms by branching on different constructors

Instead of introducing standard selectors, the SPLIT rule introduces shared selectors
Calculus for Theory of Datatypes with Shared Selectors \mathcal{D}

The **Split** rule:

$$S_\delta^{\tau, n}(t) \in \mathbf{T}(E) \text{ or } \delta \text{ is finite}$$

\[
\begin{align*}
E & := E, t \approx C_1(S_\delta^{\tau_1, 1, \text{atos}(\tau_1, 1, C_1, 1)}(t), \ldots, S_\delta^{\tau_1, n_1, \text{atos}(\tau_1, n_1, C_1, n_1)}(t)) \\
& \vdots \\
E & := E, t \approx C_m(S_\delta^{\tau_m, 1, \text{atos}(\tau_m, 1, C_m, 1)}(t), \ldots, S_\delta^{\tau_m, n_m, \text{atos}(\tau_m, n_m, C_m, n_m)}(t))
\end{align*}
\]

▷ Consider again the datatype

$$\text{Tree} = N_1(\text{Int, Tree, Tree}) \mid N_2(\text{Int, Int, Tree, Tree}) \mid L(\text{Bool, Int})$$

▷ For a term $S^{\text{Tree}, 1}(t)$, the split would introduce a branch with

\[
E := E, t \approx N_1(S^{\text{Int, atos}(\text{Int, N}_1, 1)}(t), S^{\text{Tree, atos(\text{Tree, N}_1, 2)}(t), S^{\text{Tree, atos(\text{Tree, N}_1, 3)}(t)) \\
\approx N_1(S^{\text{Int}, 1}(t), S^{\text{Tree}, 1}(t), S^{\text{Tree}, 2}(t))
\]

Datatypes with Shared Selectors
Calculus is a decision procedure for \mathcal{D}

Calculus is

- Terminating
 - All derivation trees are finite

- Refutation sound
 - If a closed derivation tree exists, then indeed E is \mathcal{D}-unsatisfiable

- Solution sound
 - If a saturated node exists, then indeed E is \mathcal{D}-satisfiable
 - Proof is constructive

Thus the calculus is a decision procedure for \mathcal{D}
Application: Syntax-Guided Synthesis (SyGuS)
Problem statement

- Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
 - specification is given by a (second-order) T-formula of the form $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
 - syntactic restrictions on the solutions for f given by a grammar R

- A solution for f is a lambda term $\lambda \bar{y}. e$ of the same type as f s.t. $\forall \bar{x}. \varphi[\lambda \bar{y}. e, \bar{x}]$ is valid in T and e is in the language generated by R
Problem statement

▷ Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space

 ▷ specification is given by a (second-order) T-formula of the form
 \[\exists f. \forall \bar{x}. \varphi[f, \bar{x}] \]

 ▷ syntactic restrictions on the solutions for f given by a grammar R

▷ A solution for f is a lambda term $\lambda \bar{y}. e$ of the same type as f s.t.
 \[\forall \bar{x}. \varphi[\lambda \bar{y}. e, \bar{x}] \] is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

\[\exists f. \forall xy. f(x, y) \approx f(y, x) \]

such that the solution space of f is defined by the grammar

\[
\begin{align*}
A & \to x \mid y \mid 0 \mid 1 \mid A+A \mid A-A \mid \text{ite}(B, A, A) \\
B & \to A \geq A \mid A \approx A \mid \neg B
\end{align*}
\]
Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space

- specification is given by a (second-order) T-formula of the form
 \[\exists f. \forall \bar{x}. \varphi[f, \bar{x}] \]

- syntactic restrictions on the solutions for f given by a grammar R

A solution for f is a lambda term $\lambda\bar{y}. e$ of the same type as f s.t.
\[\forall \bar{x}. \varphi[\lambda\bar{y}. e, \bar{x}] \] is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve
\[\exists f \forall xy. f(x, y) \approx f(y, x) \]
such that the solution space of f is defined by the grammar

\[
A \rightarrow x \mid y \mid 0 \mid 1 \mid A + A \mid A - A \mid \text{ite}(B, A, A) \\
B \rightarrow A \geq A \mid A \approx A \mid \neg B
\]

A solution is e.g. $f = \lambda xy. 0$ or $f = \lambda xy. x + y$
Encode problem using a deep embedding into datatypes

\[a = X | Y | \text{Zero} | \text{One} | \text{Plus}(a, a) | \text{Minus}(a, a) | \text{Ite}(b, a, a) \]

\[b = \text{Geq}(a, a) | \text{Eq}(a, a) | \text{Neg}(b) \]

represent the grammar \(R \) and the specification becomes

\[\forall xy. \text{eval}_a(d, x, y) \approx \text{eval}_a(d, y, x) \]

where \(d \) is a fresh constant of type \(a \).

eval maps datatype terms to their corresponding theory terms

- \(\text{eval}_a(\text{Plus}(X, X), 2, 3) \) is interpreted as \((x + x)\{x \mapsto 2, y \mapsto 3\} = 4 \)
Enumerative SyGuS in SMT

- Encode problem using a deep embedding into datatypes

\[a = X | Y | \text{Zero} | \text{One} | \text{Plus}(a, a) | \text{Minus}(a, a) | \text{Ite}(b, a, a) \]
\[b = \text{Geq}(a, a) | \text{Eq}(a, a) | \text{Neg}(b) \]

represent the grammar \(R \) and the specification becomes

\[\forall xy. \text{eval}_a(d, x, y) \approx \text{eval}_a(d, y, x) \]

where \(d \) is a fresh constant of type \(a \).

- \(\text{eval} \) maps datatype terms to their corresponding theory terms
 - \(\text{eval}_a(\text{Plus}(X, X), 2, 3) \) is interpreted as \((x + x)\{x \mapsto 2, y \mapsto 3\} = 4\)

- Solutions are models in which \(d \) is interpreted is interpreted e.g. as \(\text{Zero} \) or \(\text{Plus}(X, Y) \), corresponding to \(f = \lambda xy. 0 \) and \(f = \lambda xy. x + y \)
Pruning the search space: symmetry breaking

▷ Given the explosive nature of enumeration, reducing the number of candidate terms is key

▷ Only consider terms whose theory interpretation is unique up to theory-specific simplification!

 ► Since \(x \) and \(x + 0 \) are equivalent, ignore one of them
Pruning the search space: symmetry breaking

- Given the explosive nature of enumeration, reducing the number of candidate terms is key.

- Only consider terms whose theory interpretation is unique up to theory-specific simplification!
 - Since x and $x + 0$ are equivalent, ignore one of them.

- Symmetry breaking clauses

$$
\neg\text{isPlus}(z) \lor \neg\text{isX}(S^{\text{Int},1}(z)) \lor \neg\text{isZero}(S^{\text{Int},2}(z))
$$

which can be read as “do not consider solutions s.t. z is $x + 0$”
Pruning the search space: symmetry breaking

By instantiating z with selector chains we can rule out entire families of redundant candidates, e.g.

$$\neg\text{isPlus}(S^\text{Int,1}(d)) \lor \neg\text{isX}(S^\text{Int,1}(S^\text{Int,1}(d))) \lor \neg\text{isZero}(S^\text{Int,2}(S^\text{Int,1}(d)))$$
	n rules out terms that have $x + 0$ as their first child of type a, such as

$$\begin{align*}
(x + 0) + y & \equiv x + y \\
\text{ite}(x \geq y, x + 0, y) & \equiv \text{ite}(x \geq y, x, y) \\
(x + 0) - 1 & \equiv x - 1
\end{align*}$$
Pruning the search space: symmetry breaking

By instantiating \(z \) with selector chains we can rule out entire families of redundant candidates, e.g.

\[
\neg \text{isPlus}(S^{\text{Int},1}(d)) \lor \neg \text{isX}(S^{\text{Int},1}(S^{\text{Int},1}(d))) \lor \neg \text{isZero}(S^{\text{Int},2}(S^{\text{Int},1}(d)))
\]

rules out terms that have \(x + 0 \) as their first child of type \(a \), such as

\[
(x + 0) + y \equiv x + y \\
\text{ite}(x \geq y, x + 0, y) \equiv \text{ite}(x \geq y, x, y) \\
(x + 0) - 1 \equiv x - 1
\]

\(\triangleright \) Sharing selectors allows the same blocking clause to be reused for the different constructors

\(\triangleright \) standard selectors would require three different clauses in this case

\[
\neg \text{isPlus}(S^{\text{Plus},1}(d)) \lor \neg \text{isX}(S^{\text{Plus},1}(S^{\text{Plus},1}(d))) \lor \neg \text{isZero}(S^{\text{Plus},2}(S^{\text{Plus},1}(d))) \\
\neg \text{isPlus}(S^{\text{Ite},2}(d)) \lor \neg \text{isX}(S^{\text{Ite},2}(S^{\text{Plus},1}(d))) \lor \neg \text{isZero}(S^{\text{Ite},2}(S^{\text{Plus},2}(d))) \\
\neg \text{isPlus}(S^{\text{Minus},1}(d)) \lor \neg \text{isX}(S^{\text{Minus},1}(S^{\text{Plus},1}(d))) \lor \neg \text{isZero}(S^{\text{Minus},1}(S^{\text{Plus},2}(d)))
\]
Evaluation
Impact on SyGuS-COMP 2017 benchmarks

Datatypes with Shared Selectors

<table>
<thead>
<tr>
<th>Family</th>
<th>#</th>
<th>Solved</th>
<th>Terms</th>
<th>Sels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sh std (both)</td>
<td>sh std</td>
<td>sh std</td>
</tr>
<tr>
<td>General</td>
<td>535</td>
<td>319 235 (232)</td>
<td>189k 284k</td>
<td>5.8 16.8</td>
</tr>
<tr>
<td>CLIA</td>
<td>73</td>
<td>18 17 (17)</td>
<td>25k 60k</td>
<td>9.6 22.2</td>
</tr>
<tr>
<td>Invariant</td>
<td>67</td>
<td>46 46 (46)</td>
<td>37k 61k</td>
<td>5.7 13.1</td>
</tr>
<tr>
<td>PBE_BV</td>
<td>750</td>
<td>665 253 (253)</td>
<td>14k 202k</td>
<td>3.0 16.0</td>
</tr>
<tr>
<td>PBE_Strings</td>
<td>108</td>
<td>93 64 (64)</td>
<td>14k 41k</td>
<td>8.6 18.7</td>
</tr>
</tbody>
</table>

- Over 80% reduction in average number of selectors for PBE_BV
- PBE_Strings, General also show significant improvements
Comparison with other SygGuS solvers

<table>
<thead>
<tr>
<th>Family</th>
<th>#</th>
<th>EUSOLVER</th>
<th>CVC4-si-sh</th>
<th>CVC4-si-std</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>535</td>
<td>404</td>
<td>391</td>
<td>334</td>
</tr>
<tr>
<td>CLIA</td>
<td>73</td>
<td>71</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>Invariant</td>
<td>67</td>
<td>42</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>PBE_BV</td>
<td>750</td>
<td>739</td>
<td>665</td>
<td>253</td>
</tr>
<tr>
<td>PBE_Strings</td>
<td>108</td>
<td>68</td>
<td>93</td>
<td>64</td>
</tr>
</tbody>
</table>

- Comparison also includes CVC4’s single-invocation approach (impacts General and CLIA)
- CVC4 is only competitive on General, PBE_Strings and, specially, in PBE_BV due to shared selectors
- Further improvements with other techniques in the past months now have CVC4 leading EUSOLVER in all families in SyGuS-COMP 2018
Evaluation on SMT-LIB benchmarks

<table>
<thead>
<tr>
<th>Family</th>
<th>#</th>
<th>Solved (both)</th>
<th>Time</th>
<th>Decs</th>
<th>Terms</th>
<th>Sels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sh</td>
<td>std</td>
<td>sh</td>
<td>std</td>
<td>sh</td>
<td>std</td>
</tr>
<tr>
<td>Leon</td>
<td>410</td>
<td>179 175 (175)</td>
<td>0.96</td>
<td>0.75</td>
<td>9.9k</td>
<td>9.9k</td>
</tr>
<tr>
<td>Sledgehammer</td>
<td>321</td>
<td>113 112 (112)</td>
<td>0.47</td>
<td>0.47</td>
<td>6.9k</td>
<td>6.9k</td>
</tr>
<tr>
<td>Nunchaku</td>
<td>158</td>
<td>67 67 (67)</td>
<td>0.49</td>
<td>0.44</td>
<td>7.1k</td>
<td>6.6k</td>
</tr>
</tbody>
</table>

- Leon benchmarks show the most impact of sharing selectors
 - Reduction of over 60% in the average number of selectors
 - 4 more problems solved

- Overall SMT-LIB benchmarks are not significantly impacted
Conclusions

—we have presented an extension to theory of algebraic datatypes that adds shared selectors

—we introduced a correct decision procedure for the new theory

—we shared selectors can lead to significant gains in SyGuS solving
 ► A main reason for CVC4 becoming the best known solver is certain classes of SyGuS problems

—we possible future work is to generalize our approach for selector chains
 ► Compressing chain of applications to a single one
 ► Requires more sophisticated criteria for transformation
 ► We expect that such an extension can lead to performance improvements as well