5.5. Additional Exercises for Chapter 5

Exercise5.5.1. Let G be a finite group and let H be a subgroup. Let Y
denote the set of conjugates of H in G, Y = {gHg™': g € G}. As usual,
G/ H denotes the set of left cosets of Hin G, G/H = {gH : g € G}.

(a) Show that % =[Ng(H) : H].

(b) One has a map from G/H to Y defined by gH — gHg™. Show
that this map is well-defined and surjective.

(c) The map in part (b) is one-to-one if, and only if, H = Ng(H). In
general the map is [Ng(H) : H]-to-one; i.e. the preimage of each
element of Y has size [Ng(H) : H].

Definition 5.5.1. Suppose agroup G actson sets X and Y. One says that
amap ¢ : X — Y isG-equivariant if for al x € X,

P(g-x) =g- (¢(X)).

Exercise5.5.2. Let G act transitively on a set X. Fix Xg € X, let H =
Stab(Xg), and let Y denote the set of conjugates of H in G. Show that
there is a G-equivariant surjective map from X to Y given by X — Stab(X),
and this map is [Ng(H) : H]-to-one.

Exercise5.5.3. Let D4 C S; be the subgroup generated by (1234) and
(14)(23). Show that Ng, (D4) = D4. Conclude that there is an $;-equivariant
bijection from S;/ D4 onto the set of conjugates of D4 in S;.

Exercise 5.5.4. Let G be the rotation group of the tetrahedron, acting on
the set of faces of the tetrahedron. Show that map F — Stab(F) is bijec-
tive, from the set of faces to the set of stablizer subgroups of faces.

Exercise 5.5.5. Let G be the rotation group of the cube, acting on the set
of faces of the cube Show that map F — Stab(F) is 2-to-1, from the set of
faces to the set of stabilizer subgroups of faces.

Exercise5.5.6. Let G= S, and H = Stab(n) = S,_;. Show that H is its
own normalizer, so that the cosets of H correspond 1-to-1 with conjugates
of H. Describe the conjugates of H explicitly.

Exercise 5.5.7. Identify the group G of rotations of the cube with &, via the
action on the diagonals of the cube. G also acts transitively on the set of
set of three four-fold rotation axes of the cube; this gives a homomorphism

of & into Ss.



(@) Compute the resulting homomorphism v of $; to Sz explicitly. (For
example, compute the image of a set of generators of &.) Show
that ¥ is surjective. Find the kernel of .

(b)  Show that the stablilizer of each four-fold rotation axis is conjugate
to Dy C S

(c) Show that L > Stab(L) is a bijection between the set of four-fold
rotation axes and the stabilizer subgroups of these axes in G. This
map is G-equivariant, where G acts on the set of stabilizer sub-
groups by conjugation.

Exercise5.5.8. Let H be a proper subgroup of a finite group G. Show that
G contains an element which is not in any conjugate of H.

Exercise 5.5.9. Find all (2- and 3-) Sylow subgroups of 4
Exercise 5.5.10. Find all (2- and 3-) Sylow subgroups of A4
Exercise5.5.11. Find all (2- and 3-) Sylow subgroups of Dg

Exercise5.5.12. Let G be a finite group, p a prime and N a normal sub-
group of G of order p° for some s. Show that H is contained in every
p-Sylow subgroup of H.

Exercise5.5.13. Let G be a finite group, p a prime, P a p-Sylow subgroup
of G, and N a normal subgroup of G. Show that PN/N is a p-Sylow
subgroup of G/N and that PN N is a p-Sylow subgroup of N.

Exercise 5.5.14. This is an elaboration of Exercise 5.3.6. Let p and g be
primes such that p > q and g divides p — 1.

One can show that the automorphism group of Z is actually cyclic of order
p — 1. We will do this in Section 6.3. Assuming this fact for now, show that
there is exactly one non-abelian group of order pg, up to isomorphism, by
the following steps:

(a) Show that if G is a non-abelian group of order pg, then G is iso-
morphic to a semi-direct product Zp X Zg.

(b)  Since Aut(Zp) = Zp_1, it follows that Aut(Zp) has a unique sub-
group A of order Q.

(c) Suppose o and B are (injective) homomorphisms of Zq into Aut(Zp).
Then a(Zq) = B(Zq) = A

(d) Write ¢ = a([1]q) and ¥ = B([1]g). Then both ¢ and v are gen-
erators of the cyclic group A, so there exist integers a and b such
that = g2 and ¢ = Y.

(e) Show that ab = 1 (mod q), so that [sab]q = [s]q for all s.

(f)  Show that a([s]q) = B([sb]q) and B([s]q) = a([sa]q) for all S.
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(@) Consider Zp x Zqg and Zyp X Zqg. Define A : Zp X Zg — Zp X ZLq
[ed o B
by A(([t] p, [S]q)) = ([t] p, [Sb]q), and 1 : Zp >§ Lq —> Ly ij Lq by
w(([t]p, [Slg)) = ([t]p, [salq). Show that A and u are homomor-
phisms, and inverses of each other.
It follows that there is, up to isomorphism, exactly one non-abelian group of
order pqQ.

Exercise 5.5.15. Let G be a finite group, p a prime and P a p-Sylow sub-
group of G. Show that Ng(Ng(P)) = Ng(P).

Definition 5.5.2. Let p be a prime. A group (not necessarily finite) is
called a p-group if every element has finite order pX for some k > 0.

Exercise 5.5.16. Show that a finite group G is a p-group if, and only if, the
order of G is equal to a power of p.

Exercise5.5.17. Let N be a normal subgroup of a group G (not necessar-
ily finite). Show that G is a p-group if, and only if, both N and G/N are

p-groups.
Exercise5.5.18. Let H be a subgroup of a finite p-group G, with H = {€e}.
Show that H N Z(G) # {€}.

Exercise5.5.19. Let G be a finite group, p a prime, and P a p-Sylow sub-
group. Suppose H is a normal subgroup of G of order pk for some k. Show
that H C P.

Exercise 5.5.20. Show that a group of order 2'5™, m, n > 1, has a normal
5-Sylow subgroup. Can you generalize this statement?

Exercise 5.5.21. Show that a group G of order 56 has a normal Sylow
subgroup. Hint: Let P be a 7-Sylow subgroup. If P is not normal, count the
elements in U ng_l.
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