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5.5. Additional Exercises for Chapter 5

Exercise 5.5.1. Let G be a finite group and let H be a subgroup. Let Y
denote the set of conjugates of H in G, Y = {gHg−1 : g ∈ G}. As usual,
G/H denotes the set of left cosets of H in G, G/H = {gH : g ∈ G}.

(a) Show that
#(G/H)

#Y
= [NG(H) : H].

(b) One has a map from G/H to Y defined by gH 7→ gHg−1. Show
that this map is well-defined and surjective.

(c) The map in part (b) is one-to-one if, and only if, H = NG(H). In
general the map is [NG(H) : H]-to-one; i.e. the preimage of each
element of Y has size [NG(H) : H].

Definition 5.5.1. Suppose a group G acts on sets X and Y . One says that
a map ϕ : X→ Y is G-equivariant if for all x ∈ X,

ϕ(g · x) = g · (ϕ(x)).

Exercise 5.5.2. Let G act transitively on a set X. Fix x0 ∈ X, let H =
Stab(x0), and let Y denote the set of conjugates of H in G. Show that
there is a G-equivariant surjective map from X to Y given by x 7→ Stab(x),
and this map is [NG(H) : H]-to-one.

Exercise 5.5.3. Let D4 ⊆ S4 be the subgroup generated by (1234) and
(14)(23). Show that NS4 (D4)= D4. Conclude that there is an S4-equivariant
bijection from S4/D4 onto the set of conjugates of D4 in S4.

Exercise 5.5.4. Let G be the rotation group of the tetrahedron, acting on
the set of faces of the tetrahedron. Show that map F 7→ Stab(F) is bijec-
tive, from the set of faces to the set of stablizer subgroups of faces.

Exercise 5.5.5. Let G be the rotation group of the cube, acting on the set
of faces of the cube Show that map F 7→ Stab(F) is 2-to-1, from the set of
faces to the set of stabilizer subgroups of faces.

Exercise 5.5.6. Let G = Sn and H = Stab(n) ∼= Sn−1. Show that H is its
own normalizer, so that the cosets of H correspond 1-to-1 with conjugates
of H. Describe the conjugates of H explicitly.

Exercise 5.5.7. Identify the group G of rotations of the cube with S4, via the
action on the diagonals of the cube. G also acts transitively on the set of
set of three four-fold rotation axes of the cube; this gives a homomorphism
of S4 into S3.
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(a) Compute the resulting homomorphism ψ of S4 to S3 explicitly. (For
example, compute the image of a set of generators of S4.) Show
that ψ is surjective. Find the kernel of ψ.

(b) Show that the stablilizer of each four-fold rotation axis is conjugate
to D4 ⊆ S4.

(c) Show that L 7→ Stab(L) is a bijection between the set of four-fold
rotation axes and the stabilizer subgroups of these axes in G. This
map is G-equivariant, where G acts on the set of stabilizer sub-
groups by conjugation.

Exercise 5.5.8. Let H be a proper subgroup of a finite group G. Show that
G contains an element which is not in any conjugate of H.

Exercise 5.5.9. Find all (2- and 3-) Sylow subgroups of S4

Exercise 5.5.10. Find all (2- and 3-) Sylow subgroups of A4

Exercise 5.5.11. Find all (2- and 3-) Sylow subgroups of D6

Exercise 5.5.12. Let G be a finite group, p a prime and N a normal sub-
group of G of order ps for some s. Show that H is contained in every
p-Sylow subgroup of H.

Exercise 5.5.13. Let G be a finite group, p a prime, P a p-Sylow subgroup
of G, and N a normal subgroup of G. Show that PN/N is a p-Sylow
subgroup of G/N and that P ∩ N is a p-Sylow subgroup of N.

Exercise 5.5.14. This is an elaboration of Exercise 5.3.6. Let p and q be
primes such that p > q and q divides p− 1.
One can show that the automorphism group of Zp is actually cyclic of order
p− 1. We will do this in Section 6.3. Assuming this fact for now, show that
there is exactly one non-abelian group of order pq, up to isomorphism, by
the following steps:

(a) Show that if G is a non-abelian group of order pq, then G is iso-
morphic to a semi-direct product Zp oZq.

(b) Since Aut(Zp) ∼= Zp−1, it follows that Aut(Zp) has a unique sub-
group A of order q.

(c) Suppose α and β are (injective) homomorphisms ofZq into Aut(Zp).
Then α(Zq) = β(Zq) = A.

(d) Write ϕ = α([1]q) and ψ = β([1]q). Then both ϕ and ψ are gen-
erators of the cyclic group A, so there exist integers a and b such
that ψ = ϕa and ϕ = ψb.

(e) Show that ab ≡ 1 (mod q), so that [sab]q = [s]q for all s.
(f) Show that α([s]q) = β([sb]q) and β([s]q) = α([sa]q) for all s.
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(g) Consider Zp o
α
Zq and Zp o

β
Zq. Define λ : Zp o

α
Zq → Zp o

β
Zq

by λ(([t]p, [s]q)) = ([t]p, [sb]q), and µ : Zp o
β
Zq→ Zp o

α
Zq by

µ(([t]p, [s]q)) = ([t]p, [sa]q). Show that λ and µ are homomor-
phisms, and inverses of each other.

It follows that there is, up to isomorphism, exactly one non-abelian group of
order pq.

Exercise 5.5.15. Let G be a finite group, p a prime and P a p-Sylow sub-
group of G. Show that NG(NG(P)) = NG(P).

Definition 5.5.2. Let p be a prime. A group (not necessarily finite) is
called a p-group if every element has finite order pk for some k ≥ 0.

Exercise 5.5.16. Show that a finite group G is a p-group if, and only if, the
order of G is equal to a power of p.

Exercise 5.5.17. Let N be a normal subgroup of a group G (not necessar-
ily finite). Show that G is a p-group if, and only if, both N and G/N are
p-groups.

Exercise 5.5.18. Let H be a subgroup of a finite p-group G, with H 6= {e}.
Show that H ∩ Z(G) 6= {e}.
Exercise 5.5.19. Let G be a finite group, p a prime, and P a p-Sylow sub-
group. Suppose H is a normal subgroup of G of order pk for some k. Show
that H ⊆ P.

Exercise 5.5.20. Show that a group of order 2n5m, m, n ≥ 1, has a normal
5-Sylow subgroup. Can you generalize this statement?

Exercise 5.5.21. Show that a group G of order 56 has a normal Sylow
subgroup. Hint: Let P be a 7-Sylow subgroup. If P is not normal, count the
elements in

⋃
g∈G

gPg−1.


