Here is a summary of rules for negating statements. Refer to the “appendices” which I handed out at the beginning of the term, and to section 4 of the class notes for more details.

- The negation of “A or B” is “not(A) and not(B).”
- The negation of “A and B” is “not(A) or not(B).”
- The negation of “For every x, P(x)” is “There exists x such that not(P(x)).”
- The negation of “There exists an x such that P(x)” is “For every x, not(P(x)).”
- The negation of “A implies B” is “A and not(B).” But note, many statements with implications have implicit universal quantifiers. For example, consider the statement: “If L and M are distinct lines with non-empty intersection, then the intersection of L and M consists of one point.” This actually means: For every pair of lines L and M, if L and M are distinct and have non-empty intersection, then the intersection of L and M consists of one point.” Therefore the negation uses both the rule for negation of sentences with universal quantifiers, and the rule for negation of implications: “There exists a pair of lines L and M such that L and M are distinct and have non-empty intersection, and the intersection does not consist of one point.” This can be rephrased as: “There exists a pair of lines L and M such that L and M are distinct and have at least two points in their intersection.”

1. Form the negation of each of the following sentences; no quantifier should appear within the scope of a not(), and the negation should be expressed in natural English.
 (a) Tonight I will go to a restaurant for dinner or to a movie.
 (b) Tonight I will go to a restaurant for dinner and to a movie.
 (c) If today is Tuesday, I have missed a deadline.
 (d) For all lines L, L has at least two points.
 (e) For every line L and every plane P, if L is not a subset of P, then L ∩ P has at most one point.
 (f) (In the following statement, f is understood to be a function from a set A to a set B. The statement is the definition of f being onto.) For every b ∈ B there exists an a ∈ A such that f(a) = b.
(g) (Same context as the previous part. The statement is the definition of \(f \) being 1-to-1.) For every \(a_1, a_2 \in A \) if \(a_1 \neq a_2 \), then \(f(a_1) \neq f(a_2) \).

2. Same instructions as for the previous problem. Watch out for implicit universal quantifiers.
 (a) If \(x \) is a real number, then \(\sqrt{x^2} = |x| \).
 (b) If \(x \) is a natural number and \(x \) is not a perfect square, then \(\sqrt{x} \) is irrational.
 (c) If \(n \) is a natural number, then there exists a natural number \(N \) such \(N > n \).
 (d) If \(L \) and \(M \) are distinct lines, then either \(L \) and \(M \) do not intersect, or their intersection contains exactly one point.

3. Form the contrapositive of the following implications.
 (a) For every line \(L \) and every plane \(\mathbb{P} \), if \(L \) is not a subset of \(\mathbb{P} \), then \(L \cap \mathbb{P} \) has at most one point.
 (b) For every line \(L \) and every plane \(\mathbb{P} \), if \(L \) is not a subset of \(\mathbb{P} \), then \(L \cap \mathbb{P} \) has at most one point.
 (c) (In the following statement, \(f \) is understood to be a function from a set \(A \) to a set \(B \). The statement is the definition of \(f \) being onto.) For every \(b \in B \) there exists an \(a \in A \) such that \(f(a) = b \).
 (d) (Same context as the previous part. The statement is the definition of \(f \) being 1-to-1.) For every \(a_1, a_2 \in A \) if \(a_1 \neq a_2 \), then \(f(a_1) \neq f(a_2) \).

4. Form a/the converse of the implications in the previous exercise.

5. Prove Lemma 2.3 in the class notes.

6. Prove Theorem 3.8 in the class notes.