1. Show that given 52 integers, there exist two of them whose sum or difference is divisible by 100.

2. (a) How many ways are there to distribute 3 identical oranges, 5 identical candy canes, and one lump of coal to 3 (distinguishable) holiday stockings?
 (b) What if the candy canes are of five distinct flavors?

3. (a) Count the permutations of the multiset \(\{2a, 2b, 2c\} \).
 (b) Count the circular permutations of the multiset \(\{2a, 2b, 2c\} \), using Polya-Burnside theory. That is, count the number of orbits of the cyclic group \(\mathbb{Z}_6 \) acting on multiset permutations.

4. How many integer solutions are there to:
 (a) \(x_1 + x_2 + x_3 + x_4 = 15, \ x_i \geq 0? \)
 (b) \(x_1 + x_2 + x_3 + x_4 \leq 15, \ x_i \geq 0? \)
 (c) \(x_1 + x_2 + x_3 + x_4 = 15, \ x_i \geq 0, \ x_2 \geq 2, \ x_4 \leq 3? \)

5. Give generating function models for each of the parts of problem 4; that is, replace 15 by a variable \(n \), and write the generating function for the number of solutions to the equation or inequality.

6. (a) Give the generating function for distributions of \(r \) identical rice krispies into 17 distinguishable rice krispy boxes. (This is the same as the generating function for solutions to \(x_1 + x_2 + \cdots + x_{17} = r \).)
 (b) Give the generating function for distributions of \(r \) identical rice krispies into 17 indistinguishable rice krispy boxes. (This is the same as the generating function for solutions to \(x_1 + x_2 + \cdots + x_{17} = r \), where the order of the \(x_i \)'s doesn’t matter. Since the order doesn’t matter, arrange the \(x_i \)'s in decreasing order. So you are actually counting partitions of \(r \) with no more than 17 parts!)
 (c) Give the generating function for distributions of \(r \) identical rice krispies into \(r \) indistinguishable rice krispy boxes. (Now there is no longer any restriction on the number of parts in the partitions.)

Remark: The generating function for partitions of \(n \) with parts in a particular subset \(S \) of the natural numbers is
\[
\prod_{j \in S} \frac{1}{1 - x^j};
\]
in particular the generating function for all partitions is
\[
\prod_{j=1}^{\infty} \frac{1}{1 - x^j};
\]