Mathematics 121 Midterm Exam II - Fred Goodman April, 2005
 Version 2

Do all problems.
Responses will be judged for accuracy, clarity and coherence.

1. Prove that a vector space with a finite spanning set has a finite basis.
2. Let R be a commutative ring with 1 . Consider the standard basis $\left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right\}$ of R^{3}.
(a) Let $\mu:\left(R^{3}\right)^{3} \longrightarrow R^{3}$ be a multilinear, alternating function. Show that

$$
\mu\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)=\operatorname{det}\left(\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]\right) \mu\left(\hat{\boldsymbol{e}}_{1}, \hat{\boldsymbol{e}}_{2}, \hat{\boldsymbol{e}}_{3}\right),
$$

for any $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3} \in R^{3}$. Here $\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]$ is the 3 -by- 3 matrix whose columns are the "vectors" $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ and the determinant is defined via a sum over the symmetric group S_{3}.
(b) Show that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for any two 3 -by- 3 matrices A, B with entries in R.
3. State, but do not prove, the theorem on the invariant factor decomposition of a finitely generated module over a principal ideal domain.
4. Give the "short" proof of the Cayley-Hamilton theorem, by discussing the relation between the Smith normal form of $x-A$, where A is a square matrix over a field K, the invariant factors of A, the minimal polynomial of A, and the characteristic polynomial of A.
5. Consider the matrix

$$
A=\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 3 \\
1 & 2 & 0 & -4 & 0 \\
3 & 1 & 2 & -4 & -3 \\
0 & 0 & 0 & 1 & 0 \\
-2 & 0 & 0 & 0 & 4
\end{array}\right]
$$

The Smith Normal Form of $x-A$ is

$$
D(x)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1+x & 0 \\
0 & 0 & 0 & 0 & (-2+x)^{3}(-1+x)
\end{array}\right]
$$

The last diagonal entry of $D(x)$ expands to $x^{4}-7 x^{3}+18 x^{2}-20 x+8$
(a) Determine the minimal and characteristic polynomials of A.
(b) Write down the Jordan Canonical Form and the Rational Canonical Form of A.
(c) Find a matrix S such that $S^{-1} A S$ is in Jordan form.

The following information is useful for this: One has

$$
x-A=P(x) D(x) Q(x),
$$

where $P(x)$ and $Q(x)$ are invertible 5 -by- 5 matrices with entries in $\mathbb{Q}[x]$. The matrix $P(x)^{-1}$ is

$$
P(x)^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 \\
0 & \frac{1}{4}(-1+x) & \frac{1}{4}(-2+x)(-1+x) & -1+3 x-x^{2} & -\frac{3}{4}(-1+x) \\
\frac{4-x}{3} & 0 & 0 & \frac{4}{3}(-2+x) & 1
\end{array}\right]
$$

The following matrices might also be useful to you:

$$
\begin{array}{cl}
A^{2}=\left[\begin{array}{rrrrr}
-5 & 0 & 0 & 0 & 9 \\
1 & 4 & 0 & -12 & 3 \\
10 & 4 & 4 & -16 & -9 \\
0 & 0 & 0 & 1 & 0 \\
-6 & 0 & 0 & 0 & 10
\end{array}\right], & A^{3}=\left[\begin{array}{rrrrr}
-13 & 0 & 0 & 0 & 21 \\
-3 & 8 & 0 & -28 & 15 \\
24 & 12 & 8 & -48 & -18 \\
0 & 0 & 0 & 1 & 0 \\
-14 & 0 & 0 & 0 & 22
\end{array}\right] \\
A-2=\left[\begin{array}{rrrrr}
-3 & 0 & 0 & 0 & 3 \\
1 & 0 & 0 & -4 & 0 \\
3 & 1 & 0 & -4 & -3 \\
0 & 0 & 0 & -1 & 0 \\
-2 & 0 & 0 & 0 & 2
\end{array}\right] & (A-2)^{2}=\left[\begin{array}{rrrrr}
3 & 0 & 0 & 0 & -3 \\
-3 & 0 & 0 & 4 & 3 \\
-2 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & -2
\end{array}\right] \\
(A-2)^{3}=\left[\begin{array}{rrrrr}
-3 & 0 & 0 & 0 & 3 \\
3 & 0 & 0 & -4 & -3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
-2 & 0 & 0 & 0 & 2
\end{array}\right] & (A-1)=\left[\begin{array}{rrrrr}
-2 & 0 & 0 & 0 & 3 \\
1 & 1 & 0 & -4 & 0 \\
3 & 1 & 1 & -4 & -3 \\
0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 3
\end{array}\right]
\end{array}
$$

