Do all problems.
Responses will be judged for accuracy, clarity and coherence.

1. Show that any two bases of a finite dimensional vector space have the same cardinality.

2.
 (a) Show that a linear transformation on a finite dimensional vector space \(V \) over a field \(K \) determines a finitely generated torsion \(K[x] \)-module structure on \(V \).

 (b) Show that two linear transformations are similar if, and only if, they determine isomorphic \(K[x] \)-modules.

3. State, but do not prove, the theorem on the invariant factor decomposition of a finitely generated module over a principal ideal domain. (Note that the module is not assumed to be a torsion module.)

4. Consider the matrix

\[
A = \begin{bmatrix}
2 & -4 & -12 & 17 & 12 \\
0 & -15 & 9 & 68 & 55 \\
0 & 0 & 1 & 0 & 0 \\
0 & -4 & 0 & 18 & 13 \\
0 & 0 & 3 & 0 & 2
\end{bmatrix}
\]

The characteristic polynomial of \(A \) is \(\chi_A(x) = (x - 1)^2(x - 2)^3 \).

(a) Find the Jordan canonical form of \(A \) and find a matrix \(S \) in \(\text{Mat}_5(\mathbb{Q}) \) such that \(S^{-1}AS \) is in Jordan canonical form.

 It is helpful to know that a basis of the solution space of \((A - E)v = 0\) is

\[
\begin{bmatrix}
-36 \\
39 \\
-4 \\
0 \\
12
\end{bmatrix}
\]

and a basis of the solution space of \((A - 2E)v = 0\) is

\[
\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

(b) What are the elementary divisors and the invariant factors of \(A \)?

(c) What is the minimal polynomial of \(A \)?

(d) What is the rational canonical form of \(A \)?