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6.5.24. Fix a prime number p and consider the set Qp of rational
numbers a/b, where b is not divisible by p. (The notation Qp is not
standard.) Show that Qp is a principal ideal domain with a unique
maximal ideal M . Show that Qp/M ∼= Zp.

6.6. Unique Factorization Domains
In the first part of this section, we discuss divisors in a unique

factorization domain. We show that all unique factorization domains
share some of the familiar properties of principal ideal. In particular,
greatest common divisors exist, and irreducible elements are prime.

Lemma 6.6.1. Let R be a unique factorization domain, and let a ∈
R be a nonzero, nonunit element with irreducible factorization a =
f1 · · · fn. If b is a nonunit factor of a, then there exist a nonempty
subset S of {1, 2, . . . , n} and a unit u such that b = u

∏
i∈S fi.

Proof. Write a = bc . If c is a unit, then b = c−1a = c−1f1 · · · fn,
which has the required form. If c is not a unit, consider irreducible
factorizations of b and c, b = g1 · · · gℓ and c = gℓ+1 · · · gm. Then a =
g1 · · · gℓgℓ+1 · · · gm is an irreducible factorization of a. By uniqueness
of irreducible factorization, m = n, and the gi’s agree with the fi’s up
to order and multiplication by units. That is, there is a permutation
π of {1, 2, . . . , n} such that each gj is an associate of fπ(j). Therefore
b = g1 . . . gℓ is an associate of fπ(1) · · · fπ(ℓ). n

Lemma 6.6.2. In a unique factorization domain, any finite set of
nonzero elements has a greatest common divisor, which is unique up
to multiplication by units.

Proof. Let a1, . . . , as be nonzero elements in a unique factorization
domain R. Let f1, . . . , fN be a collection of pairwise nonassociate
irreducible elements such that each irreducible factor of each ai is
an associate of some fj . Thus each ai has a unique expression of

the form ai = ui

∏
j f

nj(ai)
j , where ui is a unit. For each j, let

m(j) = mini{nj(ai)}. Put d =
∏

j f
m(j)
j . I claim that d is a greatest

common divisor of {a1, . . . , as}. Clearly, d is a common divisor of
{a1, . . . , as}. Let e be a common divisor of {a1, . . . , as}. According

to Lemma 6.6.1, e has the form e = u
∏

j f
k(j)
j , where u is a unit
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290 6. RINGS

and k(j) ≤ nj(ai) for all i and j. Hence for each j, k(j) ≤ m(j).
Consequently, e divides d. n

We say that a1, . . . , as are relatively prime if 1 is a greatest com-
mon divisor of {a1, . . . , as}, that is, if a1, . . . , as have no common
irreducible factors.

Remark 6.6.3. In a principal ideal domain R, a greatest common
divisor of two elements a and b is always an element of the ideal
aR + bR. But in an arbitrary unique factorization domain R, a
greatest common divisor of two elements a and b is not necessarily
contained in the ideal aR + bR. For example, we will show below
that Z[x] is a UFD. In Z[x], 1 is a greatest common divisor of 2 and
x, but 1 6∈ 2Z[x] + xZ[x].

Lemma 6.6.4. In a unique factorization domain, every irreducible
is prime.

Proof. Suppose an irreducible p in the unique factorization R di-
vides a product ab. If b is a unit, then p divides a. So we can assume
that neither a nor b is a unit.

If g1 · · · gℓ and h1 · · ·hm are irreducible factorizations of a and b,
respectively, then g1 · · · gℓh1 · · ·hm is an irreducible factorization of
ab. Since p is an irreducible factor of ab, by Lemma 6.6.1 p is an
associate of one of the gi’s or of one of the hj ’s. Thus p divides a or
b. n

Corollary 6.6.5. Let R be a unique factorization domain domain.
Consider the following properties of an nonzero, nonunit element p
of R:

• pR is a maximal ideal.
• pR is a prime ideal.
• p is prime.
• p is irreducible.

The following implications hold:

pR maximal =⇒ pR prime ⇐⇒ p prime ⇐⇒ p irreducible

Proof. This follows from Lemma 6.5.18 and Lemma 6.6.4 n



 

“book” — 2005/2/6 — 14:15 — page 291 — #305
i

i

i

i

i

i

i

i
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Example 6.6.6. In an UFD, if p is irreducible, pR need not be
maximal. We will show below that Z[x] is a UFD. The ideal xZ[x]
in Z[x] is prime but not maximal, since Z[x]/xZ[x] ∼= Z is an integral
domain, but not a field.

Polynomial rings over UFD’s
The main result of this section is the following theorem:

Theorem 6.6.7. If R is a unique factorization domain, then R[x]
is a unique factorization domain.

It follows from this result and induction on the number of vari-
ables that polynomial rings K[x1, · · · , xn] over a field K have unique
factorization; see Exercise 6.6.2. Likewise, Z[x1, · · · , xn] is a unique
factorization domain, since Z is a UFD.

Let R be a unique factorization domain and let F denote the
field of fractions of R. The key to showing that R[x] is a unique
factorization domain is to compare factorizations in R[x] with fac-
torizations in the Euclidean domain F [x].

Call an element of R[x] primitive if its coefficients are relatively
prime. Any element g(x) ∈ R[x] can be written as

g(x) = dg1(x), (6.6.1)

where d ∈ R and g1(x) is primitive. Moreover, this decomposition is
unique up to units of R. In fact, let d be a greatest common divisor of
the (nonzero) coefficients of g, and let g1(x) = (1/d)g(x). Then g1(x)
is primitive and g(x) = dg1(x). Conversely, if g(x) = dg1(x), where
d ∈ R and g1(x) is primitive, then d is a greatest common divisor of
the coefficients of g(x), by Exercise 6.6.1. Since the greatest common
divisor is unique up to units in R, it follows that the decomposition
is also unique up to units in R.

We can extend this discussion to elements of F [x] as follows. Any
element ϕ(x) ∈ F [x] can be written as ϕ(x) = (1/b)g(x), where b
is a nonzero element of R and g(x) ∈ R[x]. For example, just take
b to be the product of the denominators of the coefficients of ϕ(x).
Factoring g(x) as above gives

ϕ(x) = (d/b)f(x), (6.6.2)

where f(x) is primitive in R[x]. This decomposition is unique up to
units in R. In fact, if

(d1/b1)f1(x) = (d2/b2)f2(x),
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292 6. RINGS

where f1 and f2 are primitive in R[x], then d1b2f1(x) = d2b1f2(x).
By the uniqueness of the decomposition 6.6.1 for R[x], there exists
a unit u in R such that d1b2 = ud2b1. Thus d1/b1 = ud2/b2.

Example 6.6.8. Take R = Z.

7/10 + 14/5x + 21/20x3 = (7/20)(2 + 8x + 3x3),

where 2 + 8x + 3x3 is primitive in Z[x].

Lemma 6.6.9. (Gauss’s lemma). Let R be a unique factorization
domain with field of fractions F .

(a) The product of two primitive elements of R[x] is primitive.
(b) Suppose f(x) ∈ R[x]. Then f(x) has a factorization f(x) =

ϕ(x)ψ(x) in F [x] with deg(ϕ),deg(ψ) ≥ 1 if, and only if,
f(x) has such a factorization in R[x].

Proof. Suppose that f(x) =
∑

aix
i and g(x) =

∑
bjx

j are primitive
in R[x]. Suppose p is irreducible in R. There is a first index r such
that p does not divide ar and a first index s such that p does not
divide bs. The coefficient of xr+s in f(x)g(x) is arbs+

∑
i<r aibr+s−i+∑

j<s ar+s−jbj . By assumption, all the summands are divisible by p,

except for arbs, which is not. So the coefficient of xr+s in fg(x) is
not divisible by p. It follows that f(x)g(x) is also primitive. This
proves part (a).

Suppose that f(x) has the factorization f(x) = ϕ(x)ψ(x) in F [x]
with deg(ϕ),deg(ψ) ≥ 1. Write f(x) = ef1(x), ϕ(x) = (a/b)ϕ1(x)
and ψ(x) = (c/d)ψ1(x), where f1(x), ϕ1(x), and ψ1(x) are primitive
in R[x]. Then f(x) = ef1(x) = (ac/bd)ϕ1(x)ψ1(x). By part (a), the
product ϕ1(x)ψ1(x) is primitive in R[x]. By the uniqueness of such
decompositions, it follows that (ac/bd) = eu, where u is a unit in R,
so f(x) factors as f(x) = ueϕ1(x)ψ1(x) in R[x]. n

Corollary 6.6.10. If a polynomial in Z[x] has a proper factorization
in Q[x], then it has a proper factorization in Z[x].

Corollary 6.6.11. The irreducible elements of R[x] are of two types:
irreducible elements of R, and primitive elements of R[x] that are
irreducible in F [x]. A primitive polynomial is irreducible in R[x] if,
and only if, it is irreducible in F [x].
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Proof. Suppose that f(x) ∈ R[x] is primitive in R[x] and irreducible
in F [x]. If f(x) = a(x)b(x) in R[x], then one of a(x) and b(x) must
be a unit in F [x], so of degree 0. Suppose without loss of generality
that a(x) = a0 ∈ R. Then a0 divides all coefficients of f(x), and,
because f(x) is primitive, a0 is a unit in R. This shows that f(x) is
irreducible in R[x].

Conversely, suppose that f(x) is irreducible in R[x] and of de-
gree ≥ 1. Then f(x) is necessarily primitive. Moreover, by Gauss’s
lemma, f(x) has no factorization f(x) = a(x)b(x) in F [x] with
deg(a(x)) ≥ 1 and deg(b(x)) ≥ 1, so f(x) is irreducible in F [x]. n

Proof of Theorem 6.6.7. Let g(x) be a nonzero, nonunit element
of R[x]. First, g(x) can be written as df(x), where f(x) is primitive
and d ∈ R; furthermore, this decomposition is unique up to units in
R. The element d has a unique factorization in R, by assumption,
so it remains to show that f(x) has a unique factorization into ir-
reducibles in R[x]. But using the factorization of f(x) in F [x] and
Gauss’s Lemma, we can write

f(x) = p1(x)p2(x) · · · ps(x),

where the pi(x) are elements of R[x] that are irreducible in F [x].
Since f(x) is primitive, it follows that pi(x) are primitive as well,
and hence irreducible in R[x], by Corollary 6.6.11.

The uniqueness of this factorization follows from the uniqueness
of irreducible factorization in F [x] together with the uniqueness of
the factorization in Equation (6.6.2). In fact, suppose that

f(x) = p1(x)p2(x) · · · ps(x) = q1(x)q2(x) · · · qr(x),

where the pi(x) and qi(x) are irreducible in R[x]. Since f(x) is prim-
itive, each pi(x) and qi(x) is primitive, and in particular of degree
≥ 1. By Corollary 6.6.11, each pi(x) and qi(x) is irreducible in F [x].
By the uniqueness of the irreducible factorization in F [x], after pos-
sibly renumbering the qi(x), we have pi(x) = ciqi(x) for each i for
some ci ∈ F . But then, by the uniqueness of the decompostion of
Equation (6.6.2), each ci is actually a unit in R. n

A characteriziation of UFDs
We are going to characterize unique factorization domains by two

properties. One property, the so–called ascending chain condition for
principal ideals, implies the existence of irreducible factorizations.
The other property, that irreducible elements are prime, ensures the
essential uniqueness of irreducible factorizations.
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Definition 6.6.12. We say that a ring R satisfies the ascending
chain condition for principal ideals if, whenever a1R ⊆ a2R ⊆ · · · is
an infinite increasing sequence of principal ideals, then there exists
an n such that amR = anR for all m ≥ n.

Equivalently, any strictly increasing sequence of principal ideals
is of finite length.

Lemma 6.6.13. A unique factorization domain satisfies the ascend-
ing chain condition for principal ideals.

Proof. For any nonzero, nonunit element a ∈ R, let m(a) denote
the number of irreducible factors appearing in any irreducible fac-
torization of a. If b is a proper factor of a, then m(b) < m(a), by
Lemma 6.6.1. Now if a1R ⊂

6=
a2R ⊂

6=
· · · is a strictly increasing se-

quence of principal ideals, then for each i, ai+1 is a proper factor of
ai, and, therefore, m(ai+1) < m(ai). If follows that the sequence is
finite. n

Lemma 6.6.14. If an integral domain R satisfies the ascending
chain condition for principal ideals, then every nonzero, nonunit el-
ement of R has at least one factorization by irreducibles.

Proof. This is exactly what is shown in the proof of Lemma 6.5.17.
n

Lemma 6.6.15. If every irreducible element in an integral domain
R is prime, then an element of R can have at most one factoriza-
tion by irreducibles, up to permutation of the irreducible factors, and
replacing irreducible factors by associates.

Proof. This is what was shown in the proof of Theorem 6.5.19. n

Proposition 6.6.16. An integral domain R is a unique factorization
domain if, and only if, R has the following two properties:
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(a) R satisfies the ascending chain condition for principal
ideals.

(b) Every irreducible in R is prime.

Proof. This follows from Lemma 6.6.4 and Lemmas 6.6.13 through
6.6.15. n

Example 6.6.17. The integral domain Z[
√
−5] (see Example 6.5.13)

satisfies the ascending chain condition for principal ideals. On the
other hand, Z[

√
−5] has irreducible elements that are not prime. You

are asked to verify these assertions in Exercise 6.6.6.

Example 6.6.18. The integral domain R = Z+xQ[x] (see Example
6.5.14) does not satisfy the ascending chain condition for principal
ideals, so it is not a UFD. However, irreducibles in R are prime. You
are asked to verify these assertions in Exercise 6.6.7.

Exercises 6.6
6.6.1. Let R be a unique factorization domain.

(a) Let b and a0, . . . , as be nonzero elements of R. For d ∈ R,
show that bd is a greatest common divisor of {ba1, ba2, . . . , bas}
if, and only if, d is a greatest common divisor of {a1, a2, . . . , as}.

(b) Let f(x) ∈ R[x] and let f(x) = bf1(x), where f1 is primi-
tive. Conclude that b is a greatest common divisor of the
coefficients of f(x).

6.6.2.

(a) Let R be a commutative ring with identity 1. Show that the
polynomial rings R[x1, . . . , xn−1, xn] and (R[x1, . . . , xn−1])[xn]
can be identified.

(b) Assuming Theorem 6.6.7, show by induction that if K is a
field, then, for all n, K[x1, . . . , xn−1, xn] is a unique factor-
ization domain.

6.6.3. (The rational root test) Use Gauss’s lemma (or the idea of its
proof) to show that if a polynomial anxn+ · · ·+a1x+a0 ∈ Z[x] has a
rational root r/s, where r and s are relatively prime, then s divides
an and r divides a0. In particular, if the polynomial is monic, then
its only rational roots are integers.
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296 6. RINGS

6.6.4. Generalize the previous exercise to polynomials over a unique
factorization domain.

6.6.5. Complete the details of this alternative proof of Gauss’s Lemma:
Let R be a UFD. For any irreducible p ∈ R, consider the quo-
tient map πp : R −→ R/pR, and extend this to a homomorphism
πp : R[x] −→ (R/pR)[x], defined by πp(

∑
aix

i) =
∑

i πp(ai)x
i, using

Corollary 6.2.8.

(a) Show that a polynomial h(x) is in the kernel of πp if, and
only if, p is a common divisor of the coefficients of h(x).

(b) Show that f(x) ∈ R[x] is primitive if, and only if, for all
irreducible p, πp(f(x)) 6= 0.

(c) Show that (R/pR)[x] is integral domain for all irreducible
p.

(d) Conclude that if f(x) and g(x) are primitive in R[x], then
f(x)g(x) is primitive as well.

6.6.6. Show that Z[
√
−5] satisfies the ascending chain condition for

principal ideals but has irreducible elements that are not prime.

6.6.7. Show that R = Z+xQ[x] does not satisfy the ascending chain
condition for principal ideals. Show that irreducibles in R are prime.

6.7. Noetherian Rings
This section can be skipped without loss of continuity.

The rings Z[x] and K[x, y, z] are not principal ideal domains.
However, we shall prove that they have the weaker property that
every ideal is finitely generated—that is, for every ideal I there is a
finite set S such that I is the ideal generated by S.

A condition equivalent to the finite generation property is the
ascending chain condition for ideals.

Definition 6.7.1. A ring (not necessarily commutative, not neces-
sarily with identity) satisfies the ascending chain condition (ACC)
for ideals if every strictly increasing sequence of ideals has finite
length.

We denote the ideal generated by a subset S of a ring R by (S).


