Mathematics 120 Review for Final
December, 2005

The final will be cumulative. The items listed below are in addition to the review items listed for previous exams. Something on semi-direct products of groups will probably show up on the final.

Definitions you should know:

1. Ring, subring, ring homomorphism, ideal.
2. Integral domain, Euclidean domain, unique factorization domain, field.
3. Unit, associate, irreducible element, prime element.
5. Simple ring.
6. Ascending chain condition for ideals, for principal ideals.

Theorems you should be able to prove:

1. The substitution principle (6.2.5 in text); proof to include the computation that the proposed map is a homomorphism.
2. Extension of homomorphisms to polynomial rings (6.2.8).
3. The kernel of a ring homomorphism is an ideal.
4. A commutative ring with 1 is simple if, and only if, it is a field.
5. The ring of \(n \times n \) matrices over a field is simple.
6. The intersection of any family of ideals is an ideal. The union of an increasing sequence of ideals is an ideal. The product and sum of ideals is an ideal.
7. Every ideal in \(\mathbb{Z} \) or in \(K[x] \) is principal. In general, every ideal in a Euclidean domain is principal.
8. The quotient ring and homomorphism theorems for rings.
9. Consider the following conditions on a nonzero, nonunit element \(p \) in an integral domain \(R \):

 - \(pR \) is a maximal ideal.
 - \(pR \) is a prime ideal.
 - \(p \) is prime.
 - \(p \) is irreducible.

 (a) What implications hold concerning these conditions? Prove these implications.
 (b) If \(R \) is a PID, what additional implication(s) hold. Prove these implications.

 Remark for the literal minded: Of course, you don’t have to prove every possible implication. If A implies B and B implies C, you don’t have to prove in addition that A implies C.
10. A PID is a UFD.
Be able to provide examples of:

1. A UFD that is not a PID.
2. An integral domain that is not a UFD.
3. An element in an integral domain with no irreducible factorization at all.
5. An element in an integral domain that is irreducible but not prime.
6. A prime ideal in an integral domain that is not maximal.