
Complexity of Network Synchronization

BARUCH AWERBUCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. The problem of simulating a synchronous network by an asynchronous network is investigated.
A new simulation technique, referred to as a synchronizer, which is a new, simple methodology for
designing efficient distributed algorithms in asynchronous networks, is proposed. The synchronizer
exhibits a trade-off between its communication and time complexities, which is proved to be within a
constant factor of the lower bound.

Categories and Subject Descriptors: C.2.1 [Computer-Communications Networks]: Network Architecture
and Design-distributed networks; store-and-forward networks; C.2.4 [Computer-Communications Net-
works]: Distributed Systems; C.4 [Performance of Systems]: performance attributes; F. 1.1 [Computation
by Abstract Devices]: Models of Computation-relations among models; F.2.3 [Analysis of Algorithms
and Problem Complexity]: Trade-offs among Complexity Measures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Communication and time complexities, distributed algorithms,
networks, synchronization

1. Introduction

Asynchronous algorithms are in many cases substantially inferior in terms of their
complexity to corresponding synchronous algorithms, and their design and analysis
are much more complicated. Thus, it would be helpful to develop a general
simulation technique, referred to as a synchronizer, that will allow the user to write
an algorithm as if it were run in a synchronous network. Such a technique, referred
to as a synchronizer, is proposed in this paper. Essentially, this is a new, simple
methodology for designing efficient distributed algorithms in asynchronous net-
works. No such methodology has been previously proposed in the literature for
our model; some of the related works are mentioned in the summary.

We also prove existence of a certain trade-off between communication and time
requirements of any synchronizer. It turns out that our synchronizer achieves this
lower bound within a constant factor.

For problems for which there are good synchronous algorithms, our synchronizer
allows simple construction of low-complexity algorithms. We demonstrate its power
011 the distributed maximum-flow and breadth-first-search (BFS) algorithms. There
An earlier version of this paper has been presented at the ACM Symposium on Theory of Computing,
Washington, DC, May 1984.
The author has been supported by a Chaim Weizmann Postdoctoral Fellowship. Part of this work was
performed while the author was at the Electrical Engineering Department of the Technion-Israel
Institute of Technology, Haifa.
Author’s address: Laboratory for Computer Science, Massachusetts Institute of Technology, 545
Technology Square, Cambridge, MA 02 139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/1000-0804 $00.75

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 1985, pp. 804-823.

Complexity of Network Synchronization

TABLE I. COMPLEXITIES OF SYNCHRONOUS ALGORITHMS

Adapted from
PRAM algorithm Communication Time

Problem of complexity complexity

Breadth-first search 141 IEI I VI
Maximum flow [I31 I VI3 I VIZ

805

TABLE II. COMPLEXITIES OF ASYNCHRONOUS ALGORITHMS

Problem

Breadth-first search

Communication Time Values of
Reference complexity complexity parameters

161 I VI IEI IVI
I61 1 VIZ+”) v-12-2x 0 s x 5 0.25

This paper kl VI2 b32l VI
I VI -

hk
2skclVJ

Maximum flow ill1 I VIlEI*
This paper kl VI3

I VI2 IEI
h3l VI I VI2 - logzk

2=k<lVI

are very fundamental graph-theoretic problems. Both of them can be solved by
fairly simple and elegant algorithms in a synchronous parallel computation model
(PRAM), as shown in [4] and [121. These algorithms have been easily modified in
[2] for operation in a distributed synchronous network. The complexities of the
resulting algorithms are summarized in Table I. (For precise definitions of the
complexity measures used, see Section 2.) Applying our synchronizer to the
algorithms of Table I yields new asynchronous algorithms that improve the best
existing algorithms both in terms of communication and time. Our improvements
are summarized in Table II. In the rest of the paper we proceed as follows. In
Section 2 we describe the two models we are dealing with, namely, the asynchronous
and the synchronous networks, define precisely the complexity measures for the
above models, and state precisely the problem of synchronization. In Section 3 the
solution (the synchronizer) is presented. It is also shown that in order to implement
this synchronizer efficiently, one should solve a certain combinatorial graph prob-
lem, referred to as partition problem. An algorithmic solution to this problem is
given in Section 4. In Section 5 we present the lower bound on the complexity of
synchronization. Finally, in Section 6 we summarize our results and compare them
with existing results.

2. The Problem

2.1 THE MODEL. In this paper we are dealing with distributed algorithms in
two network models. The asynchronous network is a point-to-point (store-and-
forward) communication network, described by an undirected communication
graph (V, E), where the set of nodes I/ represents processors of the network and
the set of links E represents bidirectional noninterfering communication channels
operating between them. No common memory is shared by the node’s processors,
and each node has a distinct identity. Each node processes messages received from
its neighbors, performs local computations, and sends messages to its neighbors.
All these actions are assumed to be performed in negligible time. All the messages
have a fixed length and may carry only a bounded amount of information. Each
message sent by a node to its neighbor arrives within some finite but unpredictable
time. This model appears also in [6, 10, 1 I], among others.

806 BARUCH AWERBUCH

In the synchronous network, messages are allowed to be sent only at integer
times, or pulses, of a global clock. Each node has an access to this clock. At most
one message can be sent over a given link at a certain pulse. The delay of each link
is at most one time unit of the global clock.’

The following complexity measures are used to evaluate performances of algo-
rithms operating in the two network models above. The communication complexity,
(7, is the total number of messages sent during the algorithm. The time complexity,
i”, of a synchronous algorithm is the number of pulses passed from its starting time
until its termination. The time complexity, T, of an asynchronous algorithm is the
worst-case number of time units from the start to the completion of the algorithm,
assuming that the propagation delay* and the inter-message delay3 of each link is
at most one time unit. This assumption is introduced only for the purpose of
performance evaluation; the algorithm must operate correctly with arbitrary delays.

A typical phenomenon in communication networks is the trade-off between
communication and time.

2.2 THE GOAL. Our main goal is to design an efficient synchronizer that enables
any synchronous algorithm to run in any asynchronous network. For that purpose,
the synchronizer generates sequences of “clock-pulses” at each node of the network,
satisfying the following property: A new pulse is generated at a node only after it
receives all the messages of the synchronous algorithm, sent to that node by its
neighbors at the previous pulses. This property ensures that the network behaves
as a synchronous one from the point of view of the particular execution of the
particular synchronous algorithm.

The problem arising with synchronizer design is that a node cannot know which
messages were sent to it by its neighbors and there are no bounds on link delays.
Thus, the above property cannot be achieved simply by waiting long enough before
generating the next pulse, as might be possible in a network with bounded delays.
However, the property may be achieved if additional messages are sent for the
purpose of synchronization.

The total complexity of the resulting algorithm depends on the overhead intro-
duced by the synchronizer. Let us denote the communication and time require-
ments added by a Synchronizer v per each pulse of the synchronous algorithm by
C’(v) and T(v), respectively. Synchronizers may need an initialization phase, which
must be taken into account in case where the algorithm is performed only once.
Let us denote by Cinit(v), Ti,it(v), the complexities of the initialization phase of the
Synchronizer v. In summary, the complexities of an original synchronous algorithm
S and the asynchronous algorithm A resulting from the combination of S with
Synchronizer v are CA = C’s + Ts. C(V) + C&V) and TA = Ts - T(V) + T&v),
where CA, TA and C,, TS are the communication and time complexities of
algorithms A and S, respectively. A Synchronizer v is “efficient” if all the parameters
C(v), T(v), C&v), Tinit(V) are “small enough.” The first two parameters are really
crucial since they represent the overhead per pulse.

3. The Solution

3.1 OUTLINE OF A NUMBER OF SYNCHRONIZERS. The main result of this section
is denoted as Synchronizer y. It is a combination of two simple synchronizers,
’ It can be easily seen that the network in which all delays are exactly 1 is as powerful as the one in
which delays are at most 1.
* Difference between arrival time and transmission time.
3 Difference between transmission times of two consecutive messages on the same link.

Complexity of Network Synchronization 807

denoted as Synchronizer (Y and Synchronizer & which are, in fact, generalizations
of the techniques of [6]. Synchronizer (Y is efftcient in terms of time but wasteful
in communication, while Synchronizer p is efficient in communication but wasteful
in time. However, we manage to combine these synchronizers in such a way that
the resulting Synchronizer y is efficient in both time and communication. Before
describing these synchronizers, we introduce the concept of safety.

A node is said to be safe with respect to a certain pulse if each message of the
synchronous algorithm sent by that node at that pulse has already arrived at its
destination. (Remember that messages are sent only to neighbors.) After execution
of a certain pulse, each node eventually becomes safe (with respect to that pulse).
If we require that an acknowledgment is sent back whenever a message of the
algorithm is received from a neighbor, then each node may detect that it is safe
whenever all its messages have been acknowledged. Observe that the acknowledg-
ments do not increase the asymptotic communication complexity, and each node
learns that it is safe a constant time after it entered the new pulse.

A new pulse may be generated at a node whenever it is guaranteed that no
message sent at the previous pulses of the synchronous algorithm may arrive at
that node in the future. Certainly, this is the case whenever all the neighbors of
that node are known to be safe with respect to the previous pulse. It only remains
to find a way to deliver this information to each node with small communication
and time costs. We present now the Synchronizers (Y, p, and y mentioned above.

Synchronizer (Y. Using the acknowledgment mechanism described above, each
node detects eventually that it is safe and then reports this fact directly to all its
neighbors. Whenever a node learns that all its neighbors are safe, a new pulse is
generated.

The complexities of Synchronizer (Y in communication and time are C(a) =
O(1 E 1) = 0(] V 1’) and T(a) = O(l), respectively, since one (additional) message
is sent over each link in each direction and all the communication is performed
between neighbors.

Synchronizer /3. This synchronizer needs an initialization phase, in which a
leader s is chosen in the network and a spanning tree of the network, rooted at s,
is constructed. Synchronizer /3 itself operates as follows. After execution of a certain
pulse, the leader will eventually learn that all the nodes in the network are safe; at
that time it broadcasts a certain message along the tree, notifying all the nodes that
they may generate a new pulse. The above time is detected by means of a certain
communication pattern, referred to in the future as convergecast, that is started at
the leaves of the tree and terminates at the root. Namely, whenever a node learns
that it is safe and all its descendants in the tree are safe, it reports this fact to its
father.

The complexities of Synchronizer ,f3 are C(p) = 0(] VI) and T(p) = 0(] I’]),
because all of the process is performed along the spanning tree. Actually, the time
is proportional only to the height of this tree, which may reach] V] - 1 in the
worst case.

Synchronizer y. This synchronizer needs an initialization phase, in which the
network is partitioned into clusters. The partition is defined by any spanning forest
of the communication graph (V, E) of the network. Each tree of the forest defines
a cluster of nodes and will be referred to as an intracluster tree. Between each two
neighboring clusters, one preferred link is chosen, which will serve for communi-
cation between these clusters. Inside each cluster, a leader is chosen, which will

808 BARUCH AWERBUCH

coordinate the operations of the cluster via the intracluster tree. We say that a
c-luster is safe if all its nodes are known to be safe.

Synchronizer y is performed in two phases. In the first phase, Synchronizer ,f3 is
applied separately in each cluster along the intracluster trees. Whenever the leader
of a cluster learns that its cluster is safe, it reports this fact to all the nodes in the
cluster as well as to all the leaders of the neighboring clusters. Now the nodes of
the cluster enter the second phase, in which they wait until all the neighboring
clusters are known to be safe and then generate the next pulse (as if Synchronizer
6~ were applied among clusters).

Let us, however, give a more detailed description of this synchronizer. In order
to start a new pulse, a cluster leader broadcasts along the tree a PULSE message,
which triggers the nodes which receive it to enter the new pulse. After terminating
its part in the algorithm, a node enters the first phase of the synchronizer, in which
SAFE messages are convergecast along each intracluster tree, as in Synchronizer /I.
This process is started by the leaves, which send SAFE messages to fathers whenever
they detect that they are safe. Whenever a nonleaf node detects that it is safe and
has received the message SAFE from each of its sons, then, if it is not itself the
leader, it sends SAFE to its father. Otherwise, if it is the leader, it learns that its
cluster is safe and reports this fact to all neighboring clusters by starting the
broadcast of a CLUSTER-SAFE message. Each node forwards this message to all
its sons and along all incident preferred links.

Now the nodes of the cluster enter the second phase. In order to determine the
time at which all the neighboring clusters are known to be safe, a standard
convergecast process is performed, namely, a node sends a READY message to its
father whenever all the clusters neighboring it or any of its descendants are known
to be safe. This situation is detected by a node whenever it receives READY
messages from all its sons and CLUSTER-SAFE messages from all the incident
preferred links and from its father.4

This process is started at the leaves and is finished whenever the above conditions
are satisfied at the leader of the cluster. At that time, the leader of the cluster knows
that all the neighboring clusters as well as its own cluster are safe. Now it informs
the nodes of its cluster that they can generate the next pulse by starting the
broadcast of the PULSE message. The precise algorithm performed by each node
is given in the next subsection.

Complexities of Synchronizer y. Let us denote by Ep the set of all the tree links
and all the preferred links in a partition P. Also, denote by HP the maximum height
of a tree in the forest of P. It is easy to see that at most four messages of the
synchronizer are sent over each link of E,; thus C(r) = 0(1 ED 1). It requires 0(HP)
time for each cluster to verify that it is safe and additional time O(H,) to verify
that all the neighboring clusters are safe; thus T(r) = O(H,). This observation
motivates the following combinatorial partition problem: Find a partition Pfir
which both Ep and HP are small.

Observe that the above parameters depend only on the structure of the forest. It
does not really matter how the preferred links are chosen in the partition, since
their total number equals to the total number of pairs of neighboring trees.

The solution of the above problem turns out to be a nontrivial task even for a
centralized algorithm. We may mention that it is relatively easy to find partitions
with one of the parameters being small. For example, if each node forms a cluster,
then HP = 0 and Ep = 1 E I. Also, by taking the whole graph to be a single cluster,

4 The message from the father is needed to ensure that the cluster to which the node belongs is safe.

Complexity of Network Synchronization 809

whose intracluster tree is a BFS tree with respect to some node, we achieve EP =
1 I’(and HP = e(O), where D is the diameter of the network; in the worst-case
D= IV1 - 1. With these partitions, we actually obtain the aforementioned
Synchronizers (Y and p, respectively.

Using the partition algorithm of the next section, we achieve EP 5 kl I’ 1 and HP
5 log21 V (/log,k. Here, k is a parameter of the partition algorithm and may be
chosen arbitrarily in the range 2 5 k < 1 I/ 1. By increasing k in the range from 2
to IV1 ‘I”, C(r) increases from O(1 V 1) to O(V’.‘) while T(r) decreases from
O(logZ(V 1) to O(10). The particular choice of k is up to the user and depends on
the relative importance of saving communication and time in a particular network.
This choice may also depend on the topology of the network, since, in fact, no
matter which partition is used, C(r) 5 O(1 E 1) and also T(r) 5 O(D), provided
that each intracluster tree is a BFS tree with respect to some node. For example,
in a sparse network, where 1 E 1 = O(1 V I), we choose k = 1 V 1, while in a full
network, where D = 1, we choose k = 2. This is because in a sparse (full) network,
communication (time) is small anyway.

The distributed implementation of the partition algorithm requires &it(r) =
O(kl V 1’) and Tini,(y) = O(1 V 1 log21 V l/lo&k). Applying Synchronizer y to the
synchronous BFS and maximum-flow algorithms of Table I yields new efficient
asynchronous algorithms whose complexities are mentioned in Table II; they
include the overhead of the above distributed partition algorithm.

3.2 FORMAL DESCRIPTION OF SYNCHRONIZER y. Here we give a formal algo-
rithm performed by each node i of the network. The algorithm specifies the actions
taken by node i in response to messages arriving to it from its neighbors. For
example, “For PULSE from q do . . .” means: “After receipt of PULSE message
from neighbor q, perform” Although all the messages and the variables of the
actual algorithm do carry the pulse number, we omit it in formal description below
for simplicity of notation. It is easy to see that only one bit is needed to represent
the pulse number.

Messages of the Algorithm
ACK Acknowledgment, sent in response to the message of the

synchronous algorithm.
PULSE Message that triggers the “clock-pulse.”
SAFE Message sent by a node to its father when all the descen-

dants are known to be safe.
CLUSTER-SAFE Message sent by a node to its sons and over preferred links

whenever its cluster is known to be safe.
READY Message, sent by a node to its father whenever all the

clusters connected by preferred links to descendants of the
node are known to be safe.

Variables Kept at Node i

Variables provided by the partition algorithm:
Neighbors(i) The set of neighbors of node i.
Father(i) The father of i in the intracluster spanning tree. For the

leader of the cluster, Father(i) = i.
Sons(i) The sons of i in the intracluster spanning tree.

810 BARUCH AWERBUCH

Preferred(i) Set of pointers to preferred links incident to i. For each
such link (i - j), node j is included in Preferred(i). For
convenience, we assume that Father(i) E Preferred(i).

Variables used in the algorithm:
!3afe(i, q) A binary flag, kept for all q E Sons(i), which equals 1 if

the SAFE message from q was received in the present
pulse. (Safe(i,q) = 0, 1.)

Ready(i, q) A binary flag, kept for all q E Sons(i), which equals 1 if
the READY message from q was received at the present
pulse. (Ready(i,q) = 0, 1.)

Dif(i, j) The counter, kept for each j E Neighbors(i). It shows the
difference between the number of messages of the synchro-
nous algorithm sent from i to j and the number of acknowl-
edgments ACK received from j at i. At the beginning of a
pulse, Dif(i, j) = 0. (Dif(i, j) = 0, 1, 2)

cluster-safe(i, j) A binary flag, kept for each j E Sons(i) U Father(i), which
equals 1 if the CLUSTER-SAFE message was received
from j at the present pulse. (cluster-safe(i, j) = 0, 1.)

Procedures Used in the Algorithm

Safe-Propagation Procedure that convergecasts the SAFE messages.
Ready-Propagation Procedure that convergecasts the READY messages.

The Algorithm for Node i
For PULSE message do

Trigger execution of the next pulse of the synchronized protocol P
for all q E Sons(i) do

safe (i, q) c 0 /* Wait for SAFE from q */
send PULSE to q

end
for all j E Neighbors(i), set Dif(i,k) c 0
for all k E Preferred(i), set clustersafe(i, k) c 0

end
For message of the synchronous algorithm S sent from i to j do

Dif(i,j) c Dif(i,j) + 1
end
For message of the synchronous algorithm S arriving at i from j do

send ACK to j
end
For ACK from j do

Dif(i,j) c Dif(i,j) - 1
Call Safe-Propagation

end
Whenever the actions performed at a certain pulse have been completed, do

Call Safe-Propagation
end
Safe-Propagation: Procedure
/* This procedure is called whenever there is a chance that node i as well as all its descendants
are safe. In this case, SAFE message is sent to father */

if Dif(iJ) = 0 for all j E Neighbors(i) and safe(i,q) = 1 for all q E Sons(i) then do
if Leader(i) # i then send SAFE to Father(i)
else send CLUSTER-SAFE to itself

Complexity of Network Synchronization 811

/* Cluster leader i learned that its cluster is safe and starts broadcast of CLUSTER
SAFE message m/

end
end
For SAFE from q do

safe(i,q) t 1
Call Safe-Propagation

end
For CLUSTERSAFE message from j do

if j E Preferred(i) then cluster-safe(i, j) c 1
/: The cluster to which j belongs is safe */
ifj E Father(i) then do
/* The cluster to which i itself belongs is safe */

for all q E Sons(i) do
send CLUSTER-SAFE to q
ready(i,q) c 0
/: Wait for READY from q :/

end
for all k E Preferred(i), send CLUSTER-SAFE to k
/* Inform the neighboring cluster that your cluster is safe */

end
Call Ready-Propagation

end
For READY from q do

ready(i,q) c 1
Call Ready-Propagation

end
Ready-Propagation: Procedure
/* This procedure is called whenever there is a chance that all the clusters neighboring with
node i and all its descendants are safe :/

if cluster-safe(iJ) = 1 for all j E Preferred(i) and ready(i,q) = 1
for all q E Sons(i) then do

if Leader(i) # i then send READY to Father(i)
/* i is not a leader :/
else send PULSE to itself
/* i is a leader and it has learned that its own cluster as well as all the neighboring
clusters are safe. Thus, it triggers the execution of the next pulse of the synchronous
algorithm in its cluster */

end
end

4. The Partition Algorithm

4.1 THE OUTLINE. Intuitively, the idea of the following algorithm is to choose
each cluster as a maximal subset of nodes whose diameter does not exceed the
loagrithm of its cardinality. This guarantees that the total number of the neighboring
cluster pairs is linear and the maximum cluster diameter is logarithmic in the
number of network nodes.

The algorithm proceeds, constructing the clusters one by one. Throughout the
algorithm, the “remaining graph” denotes the subnetwork induced by the nodes
that were not yet joined to clusters. The basic stage of the algorithm is as follows:
A node in the remaining graph is chosen as a new cluster leader, and then a cluster
is formed around this node. This stage is repeated until there are no more nodes
in the remaining graph.

A number of procedures are used in the Algorithm. The Cluster-Creation
procedure creates a cluster in the remaining graph around a given leader node. The

812 BARUCH AWERBUCH

Search&r_leader procedure searches the remaining graph and chooses a new
cluster leader in the case where the remaining graph is not empty. The Preferred-
Link-Election procedure chooses the preferred links outgoing from a cluster. Now
we describe each of these procedures in more detail and then give the code of the
whole partition algorithm.

4.2 CLUSTER-CREATION PROCEDURE. The Cluster-Creation procedure is the
heart of the partition algorithm. Basically, it operates as follows. A node chosen as
a new cluster leader triggers execution of the BFS algorithm with respect to itself
in the remaining graph. Each new BFS layer joins the cluster until the number of
nodes in a certain layer is less than k - 1 times the total number of nodes contained
in all the previous layers; at that time the procedure terminates, and the Search
for-Leader procedure is called.

The set of all the nodes in the above layer (the first one that was not joined to
the cluster) is called the rejected layer of that cluster. The intracluster tree of the
resulting cluster is the BFS tree with respect to the leader.

THEOREM 1. Suppose that the clusters are constructed as described above. Then
the parameters Ep, HP of the resulting partition satisfy

PROOF. Clearly, HP equals the maximum number of layers joined to a cluster.
The bound on HP follows immediately by observing that the total number of nodes
contained in a cluster must be multiplied by k at least with each additional layer.
It remains to prove the second bound on Ep. Observe that whenever creation of a
cluster containing q nodes is completed, the number of nodes in its rejected layer
cannot exceed (k - 1)q (otherwise, the rejected layer should have been joined to
the cluster). Thus the number of preferred links connecting that cluster to clusters
that are created later is at most (k - 1)q. For each preferred link connecting two
clusters let us charge the cluster which was created earlier. Summing the charge
over all the clusters, it follows that the total number of preferred links is at most
(k - l)] VI. Clearly, the total number of tree links cannot exceed] VI. Thus Ep 5
kl VI. Cl

Now we describe a distributed implementation of the above algorithm. Basically,
it is just the distributed BFS algorithm in the remaining graph. It constructs the
BFS tree layer after layer. This algorithm is derived from a synchronous algorithm
by means of a synchronization process that is very similar to synchronizer p. The
only difference is that synchronization is performed on the part of the BFS tree
constructed by the algorithm until now. This is essentially Algorithm Dl of [6].

At the beginning of pulse number P, P - 1 layers of the BFS tree have already
been constructed. The purpose of pulse number P is to join layer P to the tree or
to reject it and terminate the process of cluster creation. The final decision about
joining layer P to the cluster depends on the total number of nodes at this layer.

In order to trigger the execution of the next pulse, the leader I of the cluster
broadcasts a PULSE message over the existing tree. Each internal node at layer P’
<: P - 1 propagates the PULSE message received from its father to all its sons until
it reaches nodes of the last layer P - 1. Upon receipt of this message, node i at the
last layer P - 1 propagates the message LAYER (P - 1, I) to all neighbors,
informing them that it belongs to layer number P - 1 of the cluster, governed by
1. provided that the number of nodes at layer P is big enough.

Complexity of Network Synchronization 813

Upon receipt of such message, a neighbor j that was not yet joined to any cluster
joins the layer P of the cluster of I and chooses i as its father in the intracluster
tree. In any case, acknowledgment ACK(bitJ is sent byj back to i, carrying bit = 1
in the case where i was chosen as the father ofj and bit = 0 otherwise.

To compute the number of new nodes and ensure that all the nodes at layer P
have been counted, a convergecast process is performed. Each node waits until the
number of its descendants at layer P is known and then reports this number to its
father, inserting it into the COUNT(*J message. A node at layer P - 1 does it
whenever ACK messages have been collected from all neighbors, and an internal
node at layer P’ < P - 1 does it whenever the above reports have been received
from each of its sons. The process terminates when the leader node knows the total
number of nodes at layer P. If this number is high enough, that is, at least k - 1
times greater than the present number of nodes in the cluster, then the next pulse
P + 1 is started, and by this, the nodes of the last layer P are assured that they are
finally joined to the cluster. Otherwise, the leader 1 broadcasts along the existing
tree a REJECT message that notifies nodes of layer P that they are rejected from
the cluster. This message also means that the “father-son” relation, tentatively
established between nodes of layers P - 1, P is now canceled.

Here, the Cluster-Creation procedure terminates, and the Search-for-Leader
procedure is called. Observe that at this stage, each node knows about itself and
each of its neighbors whether they were already joined to some cluster and, if so,
the identity of its leader. (The neighbors that were not yet joined to clusters are
those neighbors from which a LAYER message was not yet received.) Nodes joined
to clusters know their father and sons in the tree. Also, no control message of the
procedure is in transient in the network.

4.3 SEARCH-FOR-LEADER PROCEDURE. Basically, the Search-for-Leader pro-
cedure operates as follows. After a certain cluster C is formed, its rejected layer is
examined. If it is not empty, then a node in this layer is chosen as a new leader. In
case the rejected layer of C is empty, the center of activity backtracks to the cluster
from which C itself was discovered, and the above procedure is repeated there. An
easy way to conceive the Search-for-Leader procedure is to consider an auxiliary
directed graph whose nodes are the clusters, where a link (i -+ j) means that cluster
j was discovered from cluster i. It is easy to see that this graph is a depth-first-
search tree [5], and the search process corresponds to a number of backward steps
on that tree followed by one forward step.

This procedure is initiated at some cluster leader 1, which starts execution of a
certain Cluster-Search subroutine. It determines whether the rejected layer of the
cluster is nonempty. In order to trigger the subroutine, the leader node 1 broadcasts
a TEST message along the intracluster tree. The election is performed by means of
a convergecast process that is very similar to the process of counting of the nodes
in the last layer, which was used in the Cluster-Creation procedure. A node i at
the last layer examines the set of its neighbors belonging to the remaining graph.
In case this set is nonempty, the node with minimum identity in this set is chosen
to be the local candidate at that node. Otherwise, the local candidate is chosen to
be nil. Then a CANDIDATE(*) message is sent to father, containing the value of
local candidate. An internal node sets its local candidate to the minimum value,
contained in CANDIDATE messages received from sons, considering nil to be
higher than any node’s identity. Whenever these messages have been received from
all the sons, a node reports the value of its candidate to its father. Upon termination
of this subroutine the local candidate at the leader is nil if the rejected layer is
empty. Otherwise it equals the minimum-identity node in that layer.

g14 BARUCH AWERBUCH

After termination of the subroutine, the center of activity of the search moves to
another cluster, depending on the result of the search in the present cluster. In case
the rejected layer of present cluster is not empty, the node k with minimal identity
number in this layer is notified that it becomes a new cluster leader. For that
purpose, NEW-LEADER{ k] message is broadcast along the tree, until it reaches
the node k itself. Upon receipt of this message, the new leader k remembers the
node from which it has arrived as its Cluster-Father and then starts creating its
own cluster. Otherwise, if the rejected layer is empty, the center of activity
backtracks to the cluster from which the present cluster was discovered, if such a
cluster exists. For that purpose, a RETREAT message is sent from I to its Cluster-
Father. This message is further propagated by each node to its father until it reaches
the cluster leader, and the search procedure is repeated from that cluster. In case
the present cluster has no cluster-father, that is, it was the very fu-st cluster to be
created, the whole Search-for-Leader Procedure terminates, since the remaining
graph must be empty.

4.4 PREFERRED-LJNK-ELECTION PROCEDURE. Basically, this procedure oper-
ates as follows. First, distinct weights are assigned to all the links. The weight of a
link (ij) is the pair (min(i, j), max(i, j)), and these pairs are ordered lexicographi-
tally. Then the preferred link between two neighboring clusters is chosen as the
minimum-weight link whose endpoints belong to these clusters. This election rule
enables each cluster to choose separately the preferred links incident to it, since it
guarantees that a link connecting two clusters is chosen either at both or at none
of these clusters. The election inside a certain cluster is performed whenever the
center of activity backtracks from that cluster in the above Search-fotLeader
procedure. Observe that at that time, all the nodes in the neighborhood have
already been joined to clusters.

The procedure is triggered by an ELECTION message, which is broadcast by the
leader along the tree. Election of the preferred edges is performed by means of a
standard convergecast process. Each node transfers to its father the “election list,”
LIST(*), prepared by it together with all its descendants in the intracluster tree.
This list specifies, for each cluster neighboring one of the above nodes, the minimal-
weight link outgoing to it. Note that this list has a variable length.

The leaves of the intracluster tree start the convergecast process by sending their
local lists to their fathers. An internal node merges its own list with the lists received
from sons, while deleting redundant entries, resulting from this merging (i.e., two
links outgoing to the same cluster). Whenever the above lists were received from
all the sons, an internal node sends its own list to its father. This process terminates
whenever the list at the leader is merged with lists of all its sons. Now the leader
broadcasts the final list along the intracluster tree. For a node receiving the above
final list, the initialization phase has terminated, and it may start execution of the
first pulse of the synchronous algorithm right away.

4.5 THE COMPLEXITY OF THE PARTITION ALGORITHM. In order to initialize the
above partition algorithm, we must choose the leader of the first cluster. For that
purpose an arbitrary node must be elected as a leader of the network. The algorithm
of [7] can perform this task, and its complexities are CMs~ = 0(1 E 1 + 1 I/]logzl I’ I)
== O(] V12) and TMST = O(] V]log2] VI).

Let us denote by CsFs (TBFs), CD, (TDFs), and C&c (TEL& the overall com-
rnunication (time) requirements of the Cluster-Creation, Search-for-Leader, and
Preferred-Link-Election procedures. Clearly, Ci”it(r) = C~sr + Csrs + Cum +
(TELEC and Knit(r) = T MST + TB= + TD~ + TELEC. We now show that

Complexity of Network Synchronization 815

(1) CBFS = o(lEj + 1 ~~bitkt VI), TBFS = o(l VI).

(2) CD, = o(l VI*), TDFS = o(l vllo&l VI).

(3) CELEC= O(kl VI*), TELEC= O(l ~110~1 VI>.

These equations imply that Ci”it(r) = O(kl I’ I*) and z&r) = 0(1 V 1 log21 V I/
log&).

4.5.1 Cluster-Creation. At each cluster the Cluster-Creation procedure is
applied exactly once, and it consists of at most logkl VI pulses. At each pulse, one
PULSE and one COUNT message pass through each link of the intracluster tree.
One LAYER and ACK message is sent over each link exactly once throughout the
whole algorithm. It yields a total communication cost of Csrs = O(l E I +
1 V 1 logkl V 1). Consider now a cluster with n nodes whose intracluster tree has
height h I lo&n. Each pulse takes h time units, and the total number of pulses is
h. Thus the total time spent in forming this cluster and deleting n nodes from the
remaining graph is o(log$z). Since for all integer n and all k L 2, login 5 9n/8,
the total time investment is linear, that is, TB~ = O(I V I).

4.5.2 Search-for-L,eader. In this part the center of activity moves along the
depth-first-search tree in the cluster graph. Whenever a center of activity arrives at
a certain cluster, this cluster is “examined” by the Cluster-Search subroutine. This
subroutine involves broadcast of TEST messages and convergecast of CANDI-
DATE messages. Afterward, the center of activity moves by means of NEW-
LEADER or RETREAT message to another cluster. The whole process described
above will be referred to as move. Observe that move is performed entirely along
intracluster trees. Its complexities are C,,,,, = 0(1 V 1) and T,,,,,, = 0(10&l V 1). In
these moves, each “edge” of the DFS tree of the cluster graph is transversed exactly
twice, and the total number of “edges” is the total number of clusters minus 1,
which cannot exceed 1 V 1 - 1. It yields a total complexity CD= = 0(1 V 1) x C,,,,,,
= O(1 VI*) and TDm = O(l VI) X T,,,,,, = O(l Vl10gkl VI).

4.5.3 Preferred-Link-Election. The PreferrehLink-Election procedure is
called once at each cluster and is performed along the intracluster spanning tree.
To simplify the computations, we assume that at each cluster the elections of the
preferred links are performed sequentially. In this case it is easier to evaluate the
complexities of the process, since only constant-length messages are used. Recall
that in the above Preferred-Link-Election procedure, all the preferred links
incident to a certain cluster were elected at the same time; this required variable-
length messages and made the computations of complexities more difficult. Cer-
tainly, the complexities may only increase as a result of this modification.

By “sequential” elections we mean that the preferred links, connecting the cluster
to neighboring clusters, are elected one by one, by means of separate “elementary
election processes.” Each such elementary process is started only after the previous
one has been completed and is performed along the intracluster tree, similarly to
the original procedure. Note, however, that election processes are performed in
different clusters in parallel, and thus the maximum election time in a single
cluster determines the time complexity of the procedure.

An elementary election process requires Gem = 0(1 V 1) and Telem = O(logkJ V 1).
This elementary process is applied in total at most (k - 1) I V 1 times, according to
the maximum possible number of preferred links. Thus the total communication
complexity is bounded by CELE~ = 0(kl V 1’). Since the number of times that the
elementary election process is performed in a certain cluster cannot exceed the
total number of nodes, 1 V 1, then TELEC = 0(I V llogkl V 1).

816 BARUCH AWERBUCH

4.6 THE FORMAL PRESENTATION OF THE PARTITION ALGORITHM

Variables and Messages Used in the Algorithm

Input variables:
Neighbors(i)

Output variables:
Father(i)

Sons(i)
Preferred(i)

Leader(i)

Leader(i, j)

Set of neighbors at the node i in the network.

Father of i in the intracluster tree. Initially, Father(i) =
nil.
Sons of i in the intracluster tree. Initially, Sons(i) = (0).
Set of pointers to preferred links incident to i. For each
such link (i-j), node j is included in Preferred(i). Initially,
Preferred(i) = (0).
Identity of the leader of the cluster, to which node i belongs.
Initially, Leader(i) = nil.
Estimate of i about Leader(j), kept for each j E Neigh-
bors(i). Initially, Leader(i, j) = nil.

Global variables :
Remaining(i) Subset of Neighbors(i) which were not joined to clusters.

Initially, Remaining(i) = Neighbors(i).

Messages used in the Cluster-Creation procedure (BFS):
PULSE Message starting a new pulse of BFS.

LAYENLql Message sent by a node belonging to layer number j in a
cluster whose leader is q.

ACK(x] Message sent in response to LAYER. Here, x is a binary
flag, which equals 1 if the sender has chosen the receiver
as its father.

COUNT{ cl Message sent by a node that has c new descendants in the
tree.

REJECT Message informing the nodes of the last layer that they are
rejected from the cluster and that the cluster-formation
procedure has terminated.

REJECT-ACK Acknowledgment for the above REJECT message.

Variables used in the Cluster-Creation procedure (BFS):
Layer(i) The layer of the intracluster tree to which i belongs.

Initially, Layer(i) = nil. (Layer(i) = 0, 1, . . . , logkl V I.)
Pulse(i) The number of the present pulse. Initially, Pulse(i) = 0.

(Pulse(i) = 0, 1, 1 VI - 1.)
ack(i, j) Binary flag, kept for each j E Neighbors(i), which equals

1 if the ACK message from q was received at the present
pulse. (ack(i,q) = 0, 1.)

Count(i) Number of new leaves, joined in the last pulse, whose
ancestor is i. Initially, Count(i) = 0. (Count(i) = 0, 1, . . . ,
I VI - 1.)

Total(i) Total number of nodes in the cluster, accumulated until
now. Initially, Total(i) = 0. (Total(i) = 0, 1, . . . 1 VI - 1.)

Complexity of Network Synchronization 817

count(i, q) A binary flag, kept for all q E Sons(i), which equals 1 if
the COUNT message from q was received in the present
pulse. (count(i,q) = 0, 1.)

rejectack(i, q) A binary flag, kept for all q E Sons(i), which equals 1 if
the REJECT-ACK message from q was received at the
present pulse. (reject_ack(i,q) = 0, 1.)

Messages used in the Search-forL.eader procedure (DFS):
NEW-LEADER{ i) Message informing that i is a new cluster leader.
TEST Message requiring the nodes to start election of the next

cluster leader in the neighborhood of the cluster.
CANDIDATE{ c) Message including an identity c, which is a candidate for

a new cluster leader.
RETREAT Message used in the search of the remaining graph for

backtracking from a cluster to its father in the cluster
graph.

Variables used in the Search-for-L,eader procedure (DFS):

Cluster-Father(i) The neighbor j from which node i was chosen as a new
cluster leader. Initially, Cluster-Father(i) = nil.

Candidate(i) The neighbor j which node i has chosen as a possible
candidate for being a new cluster leader. Initially, Candi-
date(i) = nil.

candidate(i, q) A binary flag, kept for all q E Sons(i), which equals 1 if
the CANDIDATE message from q was received in the
present pulse. (candidate(i,q) = 0, 1).

Messages used for in the Preferred_Links_Election procedure:

ELECT Message requiring the nodes to start the election of the
preferred links in the cluster.

LIST{ fist) Message where “list” is a list of links, which are candidates
for bring preferred links.

FINAL-LIST{ list) Message carrying the final list of the preferred links.

Variables used in Preferred-Links-Election procedure:

List(i) , List of links, chosen by node i together with its descendants
as possible candidate for being preferred links incident to
a cluster. It has a format ([c, (k - q)], [b, (r - p)], . ..),
where c,b are identities of neighboring clusters and
(k - q), (r - p) are the preferred links to the above clusters.
Initially, List(i) = (01. The MERGE operation, which can
be performed with two lists of the above format, first joins
these lists and then deletes the redundant entries resulting
from the join.

list(i,q) A binary flag, kept for all q E Sons(i), which equals 1 if
the LIST message from q was received in the present pulse.
(list(i,q) = 0, 1.)

818 BARUCH AWERBUCH

The algorithm for node i
Whenever notified about being chosen as a start node do

send NEW-LEADER{ i) to itself
end
For NEW-LEADER{ k) from j do
/* i is chosen as a new cluster leader */

send NEW-LEADER{ k] to all q E Sons(i)
if k E Remaining(i) then send NEW-LEADER{ k) to k
if k = i and Leader(i) = nil then do

/: i is notified for the first time that it was chosen as a new cluster leader */
Cluster-Father(i) c j
Father(i) c i
Leader(i) c i
Layer(i) c 0
Pulse(i) c 0
send PULSE to itself.
/* Trigger the cluster creation process around yourself :/

end
end
For PULSE message do
/: Next pulse of the cluster creation process */

Pulse(i) c k
if Layer(i) c k then /* i is an internal node in the tree */

for all q E Sons(i) do
send PULSE to q;
count(i,q) c 0

end
if Sons(i) = {0) then send COUNT(O) to Father(i)

else
/* Node i belongs to the last BFS layer which is finally joined to the cluster :/

for all p E Neighbors(i) do
send LAYER{ Layer(i), Leader(i)) to p
ack(i,p) c 0

end
end
For LAYER1 k, j) from q do

Leader(i,q) cj
Drop q from Remaining(i)
MERGE{ k,(i - j)) to List(i)
/* Consider link (i - j) as a candidate to be a preferred link */
if Father(i) = nil then do
/* Tentatively join the cluster */

Leader(i) t j
Layer(i) t k + 1
Father(i) c q
send ACK(1) to q
/* Inform q that it is your father :/

end
else send ACK(0) to q

eni
: I was already joined to some cluster */

For ACK(x) from q do
ack(i,q) c 1
ifx= 1 thendo /:qisanewson*/

join q to Sons(i)
Count(i) c Count(i) + 1
/* Counter of sons increased by 1 */

end

Complexity of Network Synchronization

if ack(i, j) = 1 for all j E Remaining(i) then
send COUNT(Count(i)) to Father(i)

end

For COUNT{ c) from j do
/* Node j has c descendants in the last layer :/

count(i, j) c 1
Count(i) c Count(i) + c
if count(i,q) = 1 for all q E Sons(i) then do

if Leader(i) # i then send COUNT(Count(i)) to Father(i)
else do /* i is a leader */

if Count(i) 2 Total(i) then do
/* Continue creation of the cluster */
Total(i) c Total(i) + Count(i)
Pulse(i) c Pulse(i) + 1 i
send PULSE to itself
/: Trigger the new pulse of cluster-creation process */

end
else send REJECT to itself
/* Reject the last layer; creation of the cluster is completed */

end
end

For REJECT from q do
for all q E Sons(i) do

/: Last layer is rejected a/

reject-ack(i, q) c 0
send REJECT to q

end
if Layer(i) = Pulse(i) + 1 then Father(i) c nil
/* i belongs to the last layer, which is now rejected */
if Layer(i) = Pulse(i) then Sons(i) c (0)
/* i is in the last layer, which will finally remain in the cluster */
if Sons(i) = (01 then send REJECT-ACK to Father(i)

end

For REJECT-ACK from q do
rejectack(i, q) c 1
if reject-ack(i, j) = 1 for all j E Sons(i)
then do

if Leader(i) # i then send REJECT-ACK to Father(i)
else send TEST to itself
/* If i is a leader, then start looking for a new cluster leader */

end
end

For TEST from q do
Candidate(i) c nil
for all q E Sons(i) do

candidate(i, q) + 0
send TEST to q

end
if Layer(i) = Pulse(i) then do /* i is in the external layer :/

if Remaining(i) # (0) then do
Candidate(i) c mini k 1 k E Remaining(i))
/* Choose a local candidate for the new cluster leader */
send CANDlDATE(Candidate(i)) to Father(i)

end
end

I if Sons(i) = {0) then send CANDlDATE(ni1) to Father(i).
end

819

820 BARUCH AWERBUCH

For CANDIDATE{ cl from q do
Candidate(i) c min(Candidate(i), c)
candidate(i, q) c 1
if candidate(i, j) = 1 for all j E Sons(i)
then do

if Leader(i) # i then send CANDIDATE(Candidate(i)l to Father(i)
else do /* i is a leader */

if Candidate(i) = c # nil then send NEW-LEADER{ c) to itself
else do
/* All the nodes neighboring to your cluster already belong to some clusters :/

send ELECT to itself
/* Trigger the procedure for election of preferred links in your cluster */
if Cluster-Father(i) # i then
/: Backtrack in the cluster graph and continue search */

send RETREAT to Cluster-Father(i)
/* Else the remaining graph is empty and after the election of preferred links is
completed, the algorithm terminates */

end
end

end
For RETREAT do
/* Backtrack to the father of the cluster, which will coordinate the search */

if Leader(i) # i then send RETREAT to Father(i)
else send TEST to itself
/: If i is a leader, then trigger the search in its cluster */

end
For ELECT from j do

for all q E Sons(i) do
list(i, q) t 0
send ELECT to q

end
if Sons(i) = (0) then send LIST(List(i)l to Father(i) /* i is a leaf */

end
For LIST(AList1 from q do

list(i, q) t 1
MERGE AList to List(i)
/: Merge AList with List(i) and then discard duplicate links emanating to the same
cluster :/
if list(i, j) = 1 for all q E Sons(i) then do

if Leader(i) # i then send LIST(List(i)l to Father(i)
else send FINAL-LIST{ List(i)l to itself
/* i is a leader and List(i) is the final list containing all the preferred links */
end

end
end
For FINAL-LISTlAList) from p do

for all j E Remaining(i) do
if [* ,(i - j)] appears in AList then join j to Preferred(i)

end
for all q E Sons(i) send FINAL-LIST(AListl to q
/* Now the initialization phase has terminated for node i. It may trigger the first pulse of
the synchronous algorithm right now */

end

5. Lower Bound on Complexity of Synchronization
Notice that Synchronizer y exhibits a trade-off between its communication and
time complexities. To be more precise, C(r) = O(] I’] 1+“T(y)), while r(r) = log,4 V
for any 2 5 k < I’. A natural question is whether this trade-off is an optimum one,

Complexity of Network Synchronization 821

that is, whether there exists another Synchronizer 6 that is better than Synchronizer
y both in communication and in time. We give only a partial answer to this
question. For particular networks, this might be true. However, we are able to show
that there exist networks for which the best possible improvements are within small
constant factors, that is, the worst-case trade-off of any Synchronizer 6 is C(6) =
WI VI * 1+*/T(*)) This fact is formally stated in the following theorem.

THEOREM 2. For any integer i there exist (infinitely many) networks (V, E) in
which any synchronizer 6 with T(6) < i - 1 requires C(6) > 4 1 V 1 ‘+‘li.

PROOF. In order to satisfy the condition imposed on the synchronizer, each
node should generate new pulse only after receipt of all the messages sent to it in
the previous pulse. Thus, in between each two successive pulses there must be
some information flow, provided by the control messages of the synchronizer,
between each pair of neighbors in the network. Without such information flow, a
node cannot find out in finite time whether some message sent in the previous
pulse is still in transit on a certain link or not. This follows from the fact that the
network is completely asynchronous and the node does not know a priori which
of the incident links carry messages of a certain pulse. The information flow
between neighbors may pass through the link, connecting them (e.g., Synchro-
nizer (Y), or may go along alternative paths (e.g., along links of a spanning tree, as
in Synchronizer /3). For any fixed pair of neighbors in the network, the length (in
the number of edges) of the shortest information-flow path between these neighbors
is an obvious lower bound on time complexity of a particular synchronizer. Among
these lower bounds we choose the maximum one, that is, the maximum over all
pairs of neighbors in the network of the length of the shortest information-flow
path between these neighbors.

Formally, define the girth of a graph to be the length of the shortest cycle in that
graph. We use the following lemma in our proof.

LEMMA. For each integer i there exist (infinitely many) networks (V, E) with
girthgr iand IEI >: I VI’+l’i.

PROOF. See [3, p. 104, Th. 1.11. Cl

For a particular choice of i, let (V, E) be a network with girth g z i and] E I >
4 1 V] ‘+‘li. For an arbitrary Synchronizer 6 for (V, E) let I’(6) C E be the set of
edges that carry the information flow, and let d(6) be the maximum over all (i,j)
E E of the length of a shortest path between i andj in the induced graph (V, I’(6)).
From the previous paragraph it follows that T(6) r d(6) and C(6) 2 l I’(6) I.

If C(6) L] E 1, then the theorem follows because] E 1 > $] V] ‘+‘li. Otherwise, if
C(6) <] E I, then 1 I’(6)] <] E 1, which implies that there exists an edge e E E -
I’(6). The length of a shortest path in (V, I’(6)) between the two end-points of e is
at least g - 1, since this path together with the edge e forms a simple cycle in
(V,r(6)).ThusT@)rd@)rg-lri-1. q

6. Summary and Comparison with Existing Work
In this paper we have studied the problem of simulation of the synchronous
network by an asynchronous network. We have proposed a new simulation
technique, referred to as synchronizer y, and have proved that its communication-
time trade-off is optimum within a constant factor.

Essentially, our synchronizer is a new, simple methodology for designing efficient
distributed algorithms in asynchronous networks. For the model in question, that

822 BARUCH AWERBUCH

is, a point-to-point communication network, no such methodology was explicitly
proposed in the literature. However, let us mention briefly some of the related
work. The current work was directly inspired by [6]. In this pioneering work,
Gallager introduced the notion of communication-time trade-off in distributed
algorithms and proposed a number of “synchronization” techniques, which were
used in distributed breadth-first-search algorithms. These elegant techniques are
not synchronizers in the sense of this paper, since they are not general and cannot
be applied to other algorithms. However, Synchronizer (Y and Synchronizer p of
this paper are natural generalizations of these techniques. It is worth mentioning
that we have been able to improve Gallager’s BFS algorithms using Synchronizer
y, which can be viewed as a combination of the two synchronizers above.

In our paper we consider a point-to-point communication network in which
communication is performed exclusively by message-passing. Other researchers
[1, 93 studied some issues related to synchronization under a different distributed
computation model, where any processor can communicate with any other proc-
essor. The results of [1, 91 are of no use in our context, since the underlying model
and the problems in question are substantially different from ours. Let us, however,
give a brief review of these works.

Arjomandi et al. [l] prove that a synchronous network has greater computational
power than an asynchronous one, assuming that only a bounded number of
processors can access the same variable. Schneider [9] deals with synchronization
of distributed programs and other “state-machine” applications and is not con-
cerned at all with complexity of algorithms. However, Schneider addresses fault-
tolerant issues not addressed in the current paper. It is worth mentioning that some
of the basic concepts as well as some of the basic difficulties in this paper are quite
similar to those mentioned in [9]. For example, the notion of “safe” in the current
paper corresponds to the technique described in [9] of only using “fully acknowl-
edged” messages when checking a message queue. (A similar technique appears
also in [8] in the mutual-exclusion example.) The notion of a “pulse” in the current
paper corresponds to a “phase” in [9] (timestamps generated by a logical clock are
used in [9] instead of pulse numbers). The condition imposed on pulses in the
current paper is analogous to the monotonicity requirement of [9].

ACKNOWLEDGMENTS. I wish to thank Reuven Bar-Yehuda for bringing to my
attention the Shiloach-Vishkin maximum-flow algorithm. Yossi Shiloach and Alon
Itai read the manuscript and made a number of helpful comments. Noga Alon has
provided an alternative proof of the lower bound, and Mike Luby has helped to
simplify that proof. I am also very grateful to Shimon Even, my Ph.D. supervisor,
for his generous support and encouragement.

KEFERENCES

1. ARJOMANDI, E., FISHER, M .J., AND LYNCH, N. A. A difference in efficiency between synchronous
and asynchronous systems. J. ACM 30, 3 (July 1983), 449-456.

2. AWERBUCH, B. Applications of the network synchronization for distributed BFS and Max-Flow
algorithms. Preprint. To appear in Networks.

3. BOLLOBAS, B. Extremal Graph Theory. Academic Press, New York, 1978.
4. ECKSTEIN, D. Parallel processing using depth-first-search and breadth-first search. Ph.D. Disserta-

tion, Dept. of Computer Science, Univ. of Iowa, Iowa City, Iowa, 1977.
5. EVEN, S. Graph algorithms. Computer Science Press, Woodland Hills, Calif., 1979.
6. GALLAGER, R. G. Distributed minimum hop algorithms. Tech. Rep. LIDS-P-l 175, M.I.T.,

Cambridge, Mass., Jan. 1982.

Complexity of Network Synchronization 823

7. GALLAGER, R. G., HUMBLET, P. A., AND SPIRA, P. M. A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5, 1 (Jan. 1983), 66-77.

8. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21,7(1978),558-565.

9. SCHNEIDER, F. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst. 4, 4
(Apr. 1982), 125-148.

10. SEGALL, A. Decentralized maximum flow algorithms. Networks 12 (1982), 213-230.
11. SEGALL, A. Distributed network protocols. IEEE Trans. InJ Theory IT-29, 1 (Jan. 1983), 23-25.
12. SHILOACH, Y., AND VISHKIN, U. An O(n*log n) parallel MAX-FLOW algorithm. J. Algorithms. 3

(1982), 128-146.

RECEIVED OCTOBER 1983; REVISED DECEMBER 1984; ACCEPTED APRIL 1985

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 1985.

