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ABSTRACT
A referral system is a multiagent system whose member agents are
capable of giving and following referrals. The specific cases of in-
terest arise where each agent has a user. The agents cooperate by
giving and taking referrals so each can better help its user locate
relevant information. This use of referrals mimics human interac-
tions and can potentially lead to greater effectiveness and efficiency
than in single-agent systems.

Existing approaches consider what referrals may be given and
treat the referring process simply as path search in a static graph.
By contrast, the present approach understands referrals as arising
in and influencing dynamic social networks, where the agents act
autonomously based on local knowledge. This paper studies strate-
gies using which agents may search dynamic social networks. It
evaluates the proposed approach empirically for a community of
AI scientists (partially derived from bibliographic data). Further, it
presents a prototype system that assists users in finding other users
in practical social networks.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Design, Experimentation, Human Factors
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1. INTRODUCTION
Finding relevant information is a longstanding problem in com-

puting. Conventional approaches such as databases, information re-
trieval systems, and Web search engines partially address this prob-
lem. Often, however, the most valuable information is not widely
available and may not even be indexed or cataloged. Much of this
information may only be accessed by asking the right people.

The challenge of finding relevant information then reduces to
finding the right people whom we may ask a specific question and
who will answer that question for us. The right people are those
who have the desired information or expertise. Finding them in-
volves naturally depends on our social network: our friends, our
friends’ friends, and so on. Clearly, building and maintaining a cen-
tral repository of social relationships is not feasible: people usually
cannot and, because of considerations such as privacy, will not list
their social relationships in a repository.

For this reason, distributed search through referrals is more promis-
ing. Other researchers have noted the importance of referrals for
human information flow [Brown and Reingen, 1987; Tassier and
Menczer, 2001]. Further, there is evidence that referrals to ac-
quaintances can be remarkably effective in searching large social
networks. The sociologist Milgram discovered that strangers are
connected via short chains of acquaintances [1967]. Milgram found
an average of six links in his sample of pairs of strangers in the
US—hence the pop culture concept of Six Degrees of Separation.

A referral system is a multiagent system in which the agents co-
operate by giving, pursuing, and evaluating referrals. Each user
is assigned an agent who learns the user’s preferences and inter-
ests. The agent maintains a view of its user’s acquaintances. Using
these, the agent prioritizes incoming queries, often issuing referrals
where others might be more suitable to field a given query. Based
on its user’s feedback, each agent rates those provided an answer
and those who referred to them. Each agent modifies its neighbors
accordingly. Consequently, the referral system evolves to reflect
the part of the social network. We can think of a referral system
as overlaying the social network of its users. Thus the problem of
searching a social network reduces to routing queries in a corre-
sponding referral system.

MINDS and ReferralWeb are two major approaches for referral
systems. MINDS emphasizes learning heuristics for referral gener-
ation [Huhns et al., 1987], whereas ReferralWeb focuses on how to
bootstrap the referral system [Kautz et al., 1997]. By contrast, this
paper emphasizes the dynamics of social networks and the effects
of the dynamics on information flow. Specifically, we consider how
to efficiently search social networks with the help of agents who
act only on the basis of local knowledge. We study referral systems
empirically and show how to control search by adaptively choosing
the referrals.
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The study of referrals can support the development of multiagent
systems that lack specialized agents such as brokers or facilitators
[Decker et al., 1997] or which involve people and agents working
with one another. Such multiagent systems apply in the following
scenarios.

� Knowledge Management. Traditional approaches, which em-
phasize documents, miss out on the wealth of knowledge that
is not indexed [Fischer and Ostwald, 2001]. Rapid organiza-
tional change further exacerbates the problem and increases
the importance of social networks [Nardi et al., 2000]. Our
approach helps to develop an effective, naturally occurring
knowledge management system, in which the agents not only
create and maintain the personal social networks of their users,
but also help search and explore them.

� Trust and Reputation Management. In open systems, locat-
ing trustworthy and reputed parties, e.g., service providers, is
crucial. Referrals enable agents to share information so that
untrustworthy parties can be weeded out. We previously de-
veloped a probabilistic model of reputation in which an agent
combines evidence from a number of witnesses regarding a
particular party [Yu and Singh, 2002]. Referrals can be used
to find reliable witnesses.

We have evaluated our approach in two main ways. We conducted
simulation experiments seeded with an inferred community of about
five thousand people to show how our approach leads to improved
search. We also implemented a prototype system for knowledge
management over a small real-life social network.

The rest of this paper is organized as follows. Section 2 provides
an overview of referral systems. Section 3 describes our experi-
mental results. Section 4 describes prototype referral system. Sec-
tion 5 summarizes the relevant literature. Section 6 discusses the
main themes and some directions for future research.

2. REFERRAL SYSTEMS
Intuitively, in a referral system, each agent helps its user maintain

his personal social network. The nominal procedure is simple. A
query from the user is seen by the agent, who suggests potential
contacts to whom to send the query. After consultation with the
user, the agent sends the query to the agents of the selected contacts.
Each agent maintains a model of its user. An agent who receives a
query can decide if it suits its user and, if so, forward it to the user.
If not, the agent may respond with referrals to others. If the agent
or user so wish, they can discard a query without responding to it.
(An agent would not unilaterally discard a query, but would place
it in a low-priority folder; however, let’s assume that low priority
queries are not looked at in time to have any bearing on the referral
process or how the agent’s learn about one another.)

A query specifies what information is being sought. A response,
if given, includes an answer or a referral. An answer, if given,
depends on the query and the expertise of the answering agent.
An agent answers only if it is reasonably confident of its exper-
tise matching the query. A referral depends on the query and on the
referring agent’s models of others; a referral is given only if the re-
ferring agent has sufficient confidence in the relevance of the agent
being referred.

Each agent maintains models of its acquaintances. The clos-
est acquaintances are called neighbors. An agent sends its query
initially only to some of its neighbors. If an agent receives a re-
ferral, it may pursue it even if the referred party is not already
an acquaintance—this is how acquaintances are added. An agent

adapts its models of its acquaintances from its interactions with oth-
ers, e.g., when they ask or answer a query. Each agent is allowed
only a small number of neighbors; however, no limit is imposed on
the number of acquaintances. Periodically, an agent may promote
some of its acquaintances to becoming its neighbors and demote
some existing neighbors to make room for the new ones.

When the originating agent receives referrals, it integrates them
into its models. Based on its models, it may decide to actually
follow up a referral. When the agent receives an answer, it uses the
answer as a basis for evaluating the expertise of the agent who gave
the answer. This evaluation affects its model of the expertise of the
answering agent, and its models of any agent who gave a referral
that led to this answering agent.

2.1 Modeling Expertise and Sociability
Each agent maintains two kinds of models: a profile for its user;

and an acquaintance model for each of its acquaintances. We cap-
ture these models via the vector space model (VSM) [Salton and
McGill, 1983], a classical information retrieval technique. The vec-
tors in VSM are term vectors indicating a weight for each term. We
adapt VSM to locate people rather than documents. In our formu-
lation, the terms correspond to different areas of expertise. The
expertise of each user is modeled as a term vector. Similarly, the
query is modeled as a term vector.

In VSM, the similarity between two term vectors is defined as
the cosine of the angle between them. We define the similarity
between a query and an expertise vector as the cosine of the angle
between them, but scaled by the length of the expertise vector. Intu-
itively, for two agents with expertise in the same direction, the one
with the greater expertise is more desirable, whereas the traditional
definition would treat them alike.

DEFINITION 1. Given a query vector � � ���� ��� � � � � ���
and an expertise vector � � ���� ��� � � � � ���, the similarity be-
tween � and � is defined as:

��� �

��

��� �����
�
��

�������
�

For example, consider a query vector � � ����� ���� and two
expertise vectors �� � ����� ���� and �� � ��� ��. In VSM,
�� and �� are equally similar with the query vector �, but in our
approach, �� is better than ��, since ���� � ����.

When an agent receives a query, it matches the query against
the expertise vector in its user’s profile. If there is a good enough
match, the query is passed on to its user.

DEFINITION 2. Given a threshold �� (where � � �� � �),
there is a match between user 	� and query vector � if ��	� �
��.

The sociability of an agent reflects its ability to give good refer-
rals. Each agent evaluates others based on a linear combination of
their expertise and sociability. That is, the relevance of a neighbor
to a given query depends not only on the similarity of the query to
the user’s expertise, but also on the weight assigned to sociability
versus expertise.

DEFINITION 3. The relevance of a query vector � to 	� is
computed as ��	� � �� � 
������� � 
�� , where �� is the
expertise of 	� , �� is the sociability of 	� , and 
 is the weight given
to sociability.

Further, the user 	� may specify an absolute relevance threshold
��. The threshold can be adjusted to tune the number of purported
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experts found and to limit the number of referrals that user 	� will
give to other users. Note that usually we have �� � ��.

DEFINITION 4. Given a query vector � (from the user 	� him-
self or another user) and a threshold ��, a neighbor 	� of user 	�
is relevant to � if and only if ��	� � �� for a special value of 
.

Our previous work studied the effects of 
 on the quality of re-
ferral systems [Yu et al., 2003]. We found that a certain emphasis
(during learning and querying) on the agents’ referring ability im-
proves the quality of the system, but that an overemphasis on refer-
rals at the cost of expertise is not useful. For simplicity, we only
consider the case 
 � ��	 here.

2.2 Referral Graphs
Each agent learns its user’s profile and its acquaintance models

based on an evaluation of the answers received as well as the refer-
rals that led to them. A referral graph, which is local to each agent,
encodes how the computation spreads as a query originates from an
agent and referrals or answers are sent back to this agent.

DEFINITION 5. A referral � to 
� returned from 
� is written
as �
�� 
��, we say 
� is a parent of 
� and 
� is a child of 
�.

For convenience, we include the initial query among the refer-
rals. This enables us to write a referral chain of length � for a query
originating with 
� as �
�� 
�� � � � � 
��. Then ancestor and de-
scendant are easily defined based on parent and child, respectively.

The referral chains for a given query induce a directed graph
whose root is the originating agent. The depth of a referral is its
distance on the shortest path from the root. Our algorithms ensure
that the graph remains acyclic.

DEFINITION 6. A referral graph���� for a query� is a rooted
directed graph �
��
� ��, where
� is the requesting agent (root),

 � �
�� 
�� � � � � 
�� is a finite set of agents (vertices) that in-
cludes 
�, � 	 

 
 is a set of referrals (edges).

 
Ar 

A2 

A5 

A4 

A3 

A1 

A6 

Figure 1: A referral graph generated from a query. The re-
questing agent is black; the agents that have been queried are
gray; the agent who have not been queried are white.

DEFINITION 7. A referral � � �
�� 
�� is redundant for a re-
ferral graph �
��
� ��, if and only if 
�� 
� � 
 and 
� is an
ancestor of 
� with respect to �.

Clearly, an acyclic referral graph includes no redundant referrals.
In the context of Figure 1, a referral �
�� 
�� would be redundant,
since 
� is an ancestor of 
�. Referral �
�� 
�� is not redundant,
since it introduces no cycles. Our construction algorithm avoids
redundant referrals.

2.3 Weighted Referral Graph
Figure 1 shows a simple referral graph with two leaf agents 
�

and 
�. Which should the querying agent follow first? To support
this decision, we introduce weighted referral graphs in which each
agent (vertex) and referral (edge) are assigned a weight. The idea
is that the agent with the greater weight is a better bet. Let �� be
the weight of 
� and ��� be the weight of referral �
�� 
��. This
referral (to 
�) is given by 
� to the requesting agent 
�; now we
assume 
� sends along ��� as well.

DEFINITION 8. A weighted referral graph���� is a four-tuple
�
��
� �� ��, where �
��
� �� is a referral graph generated for
query � originating with agent 
� and � is the following assign-
ment of weights to the vertices and edges of the given graph:

� Requesting agent (vertex 
�). �� � �.

� Referrals (edge from 
� to 
�). ��� � ��	� .

� Other agents (vertex 
�). �� �
�

���������
�� � ��� .
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Figure 2: A weighted referral graph

Figure 2 shows an example of a weighted referral graph. Here,
�� is ���������������� � ���
� and �� is ����. On adding a re-
ferral, we recompute the weights for the agents whose weight may
have changed. Consider Figure 2. Suppose �
�� 
�� is received
first. When we add �
�� 
�� to the referral graph, we recompute
the weight of 
�.

DEFINITION 9. Given ���� � �
��
� ����, and a new re-
ferral �
�� 
��, 
� is a cut-point of ���� if and only if 
� � 
.

For example, in the above case,
� is the last agent on the referral
chain �
�� 
�� 
��. A more interesting situation is if 
� refers to

�, where 
� was already queried and referred to
� (here 
� is a
cut-point). In this case, we must propagate the changed weights to
the descendants of 
� via the operation relax applied to cut-points.
The changed weights capture the fact that the referrals were, in
effect, stronger than previously recorded in the graph.
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Algorithm 1 Constructing a referral graph
1: Suppose agent 
� is the requesting agent, and 
 is the set of
2: agents being visited. For any referral � � �
�� 
��, agent 
�

3: will update the expertise and sociability of other agents
4: according to the following rules
5: if (
� �� 
) and (
� returns an answer) then
6: Append � to the referral graph
7: Add 
� into 

8: Update the expertise of agent 
� and the sociability of
9: any agent on the referral chain to agent 
�

10: else if (
� �� 
) and (
� does not return an answer) then
11: Append � to the referral graph
12: Add 
� to 

13: else if (
� � 
) and (
� 
� ���������
��� then
14: Append � to the referral graph
15: Relax 
� and descendants of 
�

16: else
17: Ignore referral �
18: end if

DEFINITION 10. The operation relax(Agent
�) updates (if nec-
essary) the weight of 
� and of each of its children.

Algorithm 1 presents the process of constructing a referral graph
from a set of referrals. It considers the length of referral chains
when expanding a leaf agent and prefers leaf agents with shorter
referrals if their weights are the same. Note that the Agent IDs are
the only global knowledge each agent has.

2.4 Propagating Rewards and Penalties
Now we discuss how the requesting agent updates its acquain-

tance models, i.e., assigns rewards and penalties, when an answer
is received. A simple operator � is used for updating the sociability
and expertise of a given agent. The intuition behind � is that socia-
bility and expertise ratings should build up slowly, but fall quickly:
that is, the agents are cautious in their dealings with others.

DEFINITION 11. For � and � , where � � � � � and �� �
� � �, ����� � � � � � � �� if � � � , or � � 	


��

,

otherwise.

Given a referral graph G (or ����), suppose 
� returns an an-
swer � . Then the requesting agent 
� will update the expertise and
sociability of its models as follows, where � is the rating given by

�’s user, � is the learning rate, �� � � � �, and � � � � �.

� Expertise: 
� will update the expertise vector for its own
user as �� � ���� � �� and the expertise vector for 
� as
�� � ���� � ��� . 
� will update the expertise vector for
	� as ��� ���� � �� .

� Sociability: Suppose � is the depth of
� in the referral graph.
Algorithm 2 propagates credits ( rewards or penalties) to
�’s
ancestors according to their distance from
� . The algorithm
is invoked as propagateCredits�
� � � � �� ��.

The magnitude of the rewards or penalties is greater for agents
who are closer to the answering agent. For example, in Figure 2,
�

and 
� give referrals to 
�. If 
� returns an answer of quality �,

� and
� will get credit �, respectively. 
� and
� will get credit
���. If there is no answer from 
� , there will be no penalties for
the expertise of agent 
� and for the sociability of the intermediate
agents on the referral chain.

Algorithm 2 Propagating credits or penalties in a referral graph
1: propagateCredits(Agent 
�, int l, double credits)
2: for each parent of 
� do
3: if �� � �� and (� 
� 
�) then
4: 
� = parent(
�)
5: �� � ���� � ��������
6: propagateCredits(parent(
� ), l-1, credits/2)
7: end if
8: end for

3. EXPERIMENTAL RESULTS
Networks of scientific collaborations have been studied recently

by Newman [2001] and Barabási et al. [2002]. These works focus
on the statistical properties of the networks, i.e., numbers of papers
written by authors, numbers of authors per paper, typical distance
from one scientist to another, the evolution over time of these qual-
ities, and so on. By contrast, in our experiments we investigated
the performance of expert location techniques, comparing a static
network with an evolving network.

We reconstructed a social network for 4,933 AI scientists (each
modeled as an agent) based on a bibliographic data corpus. The
data is from the proceedings of AAAI (1980-2000) and IJCAI (1981-
2001) conferences.1 We extracted author, title, and keyword for
each paper. We manually removed inconsistencies from author
names (e.g., their spellings, abbreviations, ordering) and ensured
that names are distinct if and only if the people named are distinct.
Next we built the initial social network as follows.

� Using the keywords, we classified each paper into one of the
nineteen topics in a taxonomy.2 For example, the keyword
case-based reasoning is mapped to knowledge representa-
tion and reasoning. The taxonomy is used only for catego-
rizing papers; the agents do not model each other’s expertise
weights for the various topics.

� An author is considered another author’s neighbor if they
have coauthored one or more papers. To model social rela-
tionships that are not captured in the bibliographic data (e.g.,
if two friends never coauthored a paper in the selected pro-
ceedings), we introduce additional random links among the
authors. The number of these links equals the number of
links due to coauthorship.

� The expertise vectors in the models maintained by the vari-
ous agents are initialized using the classical term-frequency
inverse document frequency (TFIDF) approach [Salton and
Buckley, 1988]. That is, each element �� of an expertise
vector � � ���� ��� � � � � ���, is derived by multiplying a
term frequency (TF) component with an inverse document
frequency (IDF) component. There are two cases.

– In the profile maintained by 
� for its user, �� � ��� �
����, where ��� is number of papers authored by 	�

�Available from http://dblp.uni-trier.de/db/conf/ijcai/ and
http://www.aaai.org/Press/Proceedings/AAAI/.
�The 19 topics and corresponding numbers of papers are: AI ar-
chitecture (224), agents and multiagent systems (265), applications
(614), art and music (49), cognitive science (254), constraint satis-
faction (271), expert systems (226), foundations (93), game play-
ing (29), genetic algorithms (43), human-computer interaction (65),
information retrieval (91), knowledge representation and reason-
ing (1692), logic programming (80), machine learning (806), natu-
ral language processing (549), neural networks (87), planning and
search (537), and vision and robotics (660).
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in topic �, and ���� � ���������, where � is the
total number of papers (6,635), and �� is the number
of papers in topic �;

– In the acquaintance model maintained by 
� for 
� ,
�� � ��� � ����, where ���� is as above, but ��� is
defined as the number of papers coauthored by 	� and
	� in topic �.

� We identify the experts in the various topics. An author is
an expert in a topic � if and only if the weight �� is above a
certain threshold. In our case, the threshold is set to �, lead-
ing to 287 out of 4,933 authors being identified as experts.
The feedback rating � is set to � if an expert is found. The
other two thresholds �� (for filtering) and �� (for referring)
for each agent 
� are both set to ���. The sociability for
all agents in acquaintance models is initialized to ���. The
learning rate � is ���.

We consider queries corresponding to vectors of length �� that
are � in one dimension and � in all other dimensions. For example,
��� �� � � � � �� would be a query in the topic of AI architecture. Typi-
cal authors have papers in one or two topics. Therefore, the queries
can be distinguished into two categories: home queries, i.e., from a
topic where the author has some papers; foreign queries, i.e., from
topics where the author has no paper.

3.1 Effect of Branching Factors
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Figure 3: Average number of experts found for different
branching factors

The first question we study is how many neighbors an agent
should refer to while processing a query. Following Kautz et al.,
we term this the branching factor and denote it by  . The branch-
ing factor influences the number of experts that can be found with
a given depth of referrals. Figure 3 shows the number of experts
found (averaged over all agents) for different branching factors,
while fixing the depth of referral graph as ��!. We find that  � 	
and  � � were needed to find all suitable experts for home and
foreign queries, respectively. Below, we use  � � (unless other-
wise specified) for both home and foreign queries. This is impor-
tant because it suggests that referrals can support a focused search.
That is, you can find the experts you need without spamming your
friends and colleagues.
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Figure 4: Average number of experts found for different depth
of referral graphs

3.2 Depth of Referral Graphs
The next natural question is how deep would the referral graphs

need to be for this network? We find that for home queries, the
depth should be five, but for foreign queries, the depth should be
six.

Figure 4 illustrates the power of referrals. Setting the maximum
depth to one achieves the effect of contacting one’s neighbors but
not using referrals. For home queries, referrals yield a four-fold
improvement in chance of finding an acceptable answer (from 14%
to 57%). Referrals are even more important when seeking an expert
in an area different from one’s own. For foreign queries, referrals
yield a thirty-fold improvement (from 0.6% to 19%). In each case
the average number of experts found tend to level off after the depth
is increased beyond a certain point. This indicates that the remain-
ing experts are socially disconnected from the requesting agent.

3.3 Accuracy of Referral Chains
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Figure 5: Average number of experts found in a dynamic refer-
ral systems

Everyone has only incomplete knowledge of his community. This
is why social networks are useful in the first place. Some agents
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may not be good experts, but may be well connected and may give
good referrals. In our approach, sociability credits the ability to
give good referrals. The referring process considers both the ex-
pertise and the sociability of the different agents. The agents send
queries, referrals, and responses to one another, all the while learn-
ing about each others’ expertise and sociability. Note that the num-
ber of neighbors for each agent remains constant, but the set of
neighbors is updated so that the most promising acquaintances are
promoted to be neighbors. After each agent sends out ten home or
foreign queries, we run the experiment again for different depths of
referrals. Figure 5 shows that, even with only ten queries, the num-
ber of experts found can be significantly improved. This suggests
that learning could be effective in practice, especially for home
queries.

3.4 Minimizing Referral Graphs
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Figure 6: Average referrals per experts after minimizing refer-
ral graphs

Our last experiment is about how to minimize referral graphs
by using weights as introduced in Section 2.3. When the request-
ing agent 
� receives referrals, it queries an agent with the highest
weight. The referring process stops when an expert is found. Fig-
ure 6 summarizes the results when  � �. We find that the average
number of referrals per expert is significantly improved after min-
imizing the referral graph. This experiment indicates that the re-
questing agent can efficiently find short paths to the desired experts,
even though the referrals are generated based on local knowledge.

4. A PROTOTYPE SYSTEM
The Multiagent Referral System, MARS, is a prototype system

based on the above ideas. MARS agents give and take referrals as
above. They also include an interface in which text queries can be
entered by users.

A challenge for referral systems is how to bootstrap them. MARS
uses a server where new users register themselves along with their
topics of expertise and with which they can find existing users
based on their self-stated interests. A unique UserID is assigned
to the MARS agent when its user registers on the server. An agent
may contact the registration server as a fall back mechanism if it
cannot find a suitable contact on its own.

MARS is implemented in Java. It uses IBM’s Agent Building
and Learning Environment (ABLE) for its reasoner [Bigus et al.,

2002]. The registration server is implemented over a Sybase DBMS.
In the current version of MARS, MARS agents use email (using a
dedicated server) as its transport mechanism. Due to the limita-
tions of the current email server, and NCSU regulations, MARS
was only evaluated by a small group of users at NCSU. Users can
send queries in the topic of AI. MARS then helps search for the
needed experts. Because of referrals, these experts need not be
neighbors of the requesting party. We are replacing MARS’ trans-
port layer with Jabber, an open, XML-based protocol for instant
messaging and presence (http://www.jabber.org).

5. RELATED WORK
Previous work on referral systems, peer-to-peer networks, and

multiagent systems has also addressed the problem of searching
large, complex networks. We review some of the key literature
below.

5.1 Referral Systems
MINDS is a distributed information retrieval system, in which

agents share both knowledge and tasks in order to cooperate in re-
trieving documents for users. Huhns et al. [1987] present a set
of heuristics for learning and updating the relevance of documents
to individual topics of interest. By dynamically learning docu-
ment distribution patterns, as well as user interests and preferences,
MINDS customizes document retrieval for each user.

Kautz et al. simulated expertise location in a large company and
showed how the length and accuracy of referral chains are affected
by the number of users, and the accuracy and responsiveness of
each user [1996]. Kautz et al. developed ReferralWeb in which the
co-occurrence of names in close proximity on Web pages is used
to suggest direct person-to-person relationships. An early version
used email logs to infer relationships between people, but later ver-
sions excluded email because of users’ concerns over privacy.

Our work is similar in spirit to MINDS and ReferralWeb but ex-
tends them in two ways. MINDS incorporates learning, but does
not explicitly use referral chains. ReferralWeb models a referral
system statically as a graph and considers referrals directly through
path search in the graph. However, it lacks a learning component
for each agent, and cannot accommodate different strategies for
choosing referrals for different queries.

ContactFinder is an agent that reads messages posted on bulletin
boards, and extracts topic areas using a set of heuristics [Krulwich
and Burkey, 1996]. It assists users by referring them to people who
can help them. ContactFinder posts its referrals back to the bulletin
boards, and hence that person’s communication partners are not
considered. The Knowwho email agent maps a user’s social net-
work by reading through his email messages [Kanfer et al., 1997].
Knowhow applies three techniques to improve the accuracy of re-
ferrals: (1) term-weighted document matching methods adapted to
locating persons, (2) relevance feedback, and (3) semantic general-
ization for terms used in queries. It does not consider the sociability
of each user, and strategies for controlling the referral process.

Vivacqua et al. develop a user-interface agent, called Expert
Finder, which can assist a novice user in finding experts by match-
ing the profiles of the novice and the expert [2000]. A MITRE
project, also called Expert Finder, derives expertise estimation from
newsletters, resumes, employee database and other information in
an organization [Maybury et al., 2000]. MITRE’s XperNet focuses
on identification and tracking of expert communities using statisti-
cal clustering and network analysis. Answer Garden applies in help
desks [McDonald and Ackerman, 2000]. It provides a branching
network of diagnostic questions through which experts can navi-
gate to match a novice’s question. Answer Garden uses approxima-
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tion techniques for mapping expertise networks (specializations of
an organization’s social network) within an organization. IKNOW
assists users by generating referrals by searching an organization’s
databases [Contractor et al., 1989]. In other words, it answers ques-
tions such as who knows what? and who knows who? about the
organization’s knowledge network.

5.2 Peer-to-Peer Networks
The problem of searching a large network has been studied for

peer-to-peer (P2P) networks. Typically, a P2P node broadcasts a
search request to its peers, who propagate the request to their peers,
and so on. By contrast, in a referral system, referrals are sent back
to the requesting agent, who can adaptively direct or end the search.

Distributed search algorithms in Gnutella broadcast a request
to all peers in a brute force manner. Chord [Stoica et al., 2001],
CAN [Ratnasamy et al., 2001], and Pastry [Rowstron and Druschel,
2001] study distributed hashing, in which given an object, the algo-
rithm will guarantee to locate a peer that has that object. In Chord,
nodes are assigned a numerical identifier along a ring, while in
CAN, nodes are a subrange of an N-dimensional torus. However,
in these techniques, the routing table for each node is fixed and thus
the network is not reconfigurable. Most importantly, the techniques
are not applicable to social networks, which cannot be partitioned
by IP address.

Yang et al. [2002] study performance and tradeoff of three search
techniques: iterative deepening, directed BFS, and local indices.
Directed BFS is similar to our approach, but in their approach, each
node only maintains simple statistics for its neighbors Instead, in
order to select neighbors more accurately, we model information
about each neighbor in an expertise vector.

Adamic et al. [2001] and Kim et al. [2002] study the power-law
of link distributions, and introduce a number of local search strate-
gies that use high degree nodes. Such strategies may be helpful
for people, who can decide to contact friends who are better con-
nected than others, but they cannot readily be used in the design of
agent-based referral systems. Our notion of sociability captures a
similar intuition and enables each agent to learn about which of its
neighbors are more effective at referrals.

The small-world phenomenon has been known for a long time
[Milgram, 1967], but was not understood computationally until re-
cently. Watts & Strogatz [1998] found that small-world networks
are neither fully regular nor fully random. Such networks are highly
clustered (like regular graphs) with just a few random short paths
(like random graphs). Kleinberg [2000] found that it was only pos-
sible to find short paths for the model after randomly rewiring a
two-dimensional lattice in a decentralized fashion. The topology
of referral systems is similar to a two-dimensional lattice, but in
our settings there is no global information about the position of the
“target” agent. Hence, it is not possible to determine whether a
move is toward or away from a target.

5.3 Matchmaking Systems
To be deployed in open settings, multiagent systems must pro-

vide effective, robust, and scalable mechanisms for locating agents.
Classically, middle agents address this challenge [Decker et al.,
1997]. Centralized architectures have a single middle agent, which
provides location services to the other agents in the system [Decker
et al., 1997]. Such architectures are simple to use, but do not scale
well, have a single point of failure, and most importantly cannot
offer multiple perspectives. Conventional distributed architectures
use multiple middle agents, each with partial information of the
system. The middle agents cooperate with one another to locate
agents with desired services. Although such architectures can yield

better performance and reliability than centralized architectures,
they presuppose a fixed configuration. Therefore, these architec-
tures are ill-suited to multiagent systems where agents can join and
leave the system dynamically.

Shehory proposed a peer-to-peer location mechanism for open
multiagent systems, in which each agent caches a list of agents
it knows [1999]. Shehory’s mechanism is similar to distributed
search in peer-to-peer networks. Shehory studied the communi-
cation complexity of the above system based on lattice-like graphs,
while we focus on how to efficiently find unknown agents in large
and dynamic multiagent systems and social networks of unknown
topology.

Matchmaking systems, such as SHADE [Kuokka and Harada,
1995] and Yenta [Foner, 1997], group or cluster users with similar
interests. The basic idea behind matchmaking systems is bootstrap-
ping each agent and finding at least one other agent with which to
communicate and forming clusters of like-minded agents. When
grouped together, users can easily find others with similar interests.
However, matchmaking systems have no mechanism specifically
for finding experts, so it is harder to find someone who has enough
knowledge to help.

Collaborative filtering involves a server aggregating the choices
of several users and making recommendations to a user based on
the choices of users similar to the given user Schafer et al. [1999].
This approach has the limitation of identifying the user providing a
rating to the server, while not revealing the source of recommenda-
tions. Our approach, by contrast, is decentralized and lets the users
control to whom they reveal their ratings.

6. CONCLUSION
Social networks are a natural way for people to go about seek-

ing information [Nardi et al., 2000]. Referral systems are promis-
ing because they capture two essential aspects of social networks:
how they are applied and how they are evolved. In some appli-
cations, e.g., knowledge management, a referral system may only
assist users in maintaining their social relationships; in other appli-
cations, e.g., trustworthy service location, the social relationships
of interest may emerge among the agents.

The second class of applications relates to using a referral system
as an ingredient of a practical multiagent system, where the broker-
age and location services are handled through referrals. A referral
system approach, being perfectly decentralized, would not only be
more resistant to failure but would also lead to the dissemination of
better vetted information, leading to superior performance across
the system.

The above work has opened up some interesting avenues for fur-
ther research. On the theoretical side, we plan to incorporate incen-
tives and other mechanisms to encourage the participation of users
and to discourage exploitation of helpful users. On the practical
side, we plan to complete the transition of MARS to an IM-style
transport and to expand the user base so as to be able to conduct
more realistic evaluations.
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