
Koorde: A simple degree-optimal distributed hash table

M. Frans Kaashoek and David R. Karger
MIT Laboratory for Computer Science

{kaashoek,karger}@lcs.mit.edu

Abstract

Koorde1 is a new distributed hash table (DHT) based
on Chord [15] and the de Bruijn graphs [2]. While
inheriting the simplicity of Chord, Koorde meets
various lower bounds, such as O(log n) hops per
lookup request with only 2 neighbors per node
(where n is the number of nodes in the DHT), and
O(log n/ log log n) hops per lookup request with
O(log n) neighbors per node.

1 Introduction
A number of different performance measures exist
for DHTs; optimizing one tends to put pressure on
the others. These measures include:

1. degree: the number of neighbors with which a
node must maintain continuous contact;

2. hop count: the number of hops needed to get a
message from any source to any destination;

3. The degree of fault tolerance: what fraction of
the nodes can fail without eliminating data or
preventing successful routing;

4. The maintenance overhead: how often mes-
sages are passed between nodes and neighbors
to maintain coherence as nodes join and depart;

5. The degree of load balance: how evenly keys
are distributed among the nodes, and how much
load each node experiences as an intermediate
node for other routes.

There are other measures for DHTs, such as delay
(i.e., proximity routing) and resilience against mali-
cious nodes, but because of the page limit we mostly
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1A mathematical chord is a koorde in the Dutch language.

ignore them in this paper.
A quick survey of existing systems shows some

common trends. Degree tends to be logarithmic, or
at worst polylogarithmic. Hop count is generally log-
arithmic as well. These bounds turn out to be close
to optimal, but not optimal.

We point out that for any constant degree k,
Θ(log n) hops is optimal. We also show that to pro-
vide a high degree of fault tolerance, a node must
maintain O(log n) neighbors; in that case, however,
an O(log n/ log log n) hop count may be achieved.

Koorde is a simple DHT that exploits de Bruijn
graphs to achieve these lower bounds. Koorde may
be important in practice, because it has low mainte-
nance overhead.

2 Bounds and tradeoffs
In this section, we discuss lower-bounds and trade-
offs between some of the DHT measures.

2.1 Degree and hop count

Our first observation relates the degree and routing
hops in any system:

Lemma 2.1. An n-node system with maximum de-
gree d requires at least logd n−1 routing hops in the
worst case and logd n−O(1) on average.

Proof. Since the maximum degree is d, the number
of nodes within distance h is, by induction, at most
dh+1/(d−1). Since dlog

d
n = n, it follows that some

node is at distance at least logd n − 1. The average-
case claim follows from the corollary that in fact al-
most all nodes are at distance logd n−O(1).

Many protocols (Chord, Kademlia [9], Pastry [11],
Tapestry [5]) offer O(log n) degree and hop count.
CAN [10] uses degree d to achieve O(dn1/d) hops.
These are near-optimal bounds but the lower bound



allows for (i) O(log n) hops using only constant
degree and (ii) a degree of O(log n) achieving
O((log n)/ log log n) hops.

The Viceroy DHT [8] provides constant expected
degree. However, its high probability bound is
O(log n)—in fact, it is likely that a few unlucky
nodes will have Ω(log n) degree. Viceroy is also rel-
atively complex. For example, it involves estimating
the size of the network to select various “levels” for
nodes in the system. Furthermore, fault tolerance is
not discussed in the Viceroy paper.

2.2 Fault tolerance and maintenance

A strong notion of fault tolerance is one that requires
all live nodes to remain connected in the presence of
node failures. Connectivity is a necessary (but not
sufficient) condition for efficient routing.

Lemma 2.2. In order for a network to stay con-
nected with constant probability when all nodes fail
with probability 1/2, some nodes must have degree
Ω(log n).

Proof. Suppose that the maximum degree d <
log n−2 log log n−1. Then the probability that a par-
ticular node is isolated, staying up but losing all of its
neighbors, is at least (1/2)d+1 ≥ 22 log log n/2log n =
(log2 n)/n. Since there are n nodes, we expect at
least log2 n nodes to become isolated. This almost
gives what we want, but we must deal technically
with the fact that node isolations are not independent:
if one node is not isolated then it has a living neigh-
bor, which decreases the odds of other nodes being
isolated.

However, since the maximum degree is d, each
node has at most d2 neighbors at distance 2. It fol-
lows that there is a set S of n/d2 nodes such that
no two share any neighbors (the set can be found
by a greedy algorithm: take a node, include it in
S, delete its distance-2 neighbors, repeat). Since
none of the nodes in S share any neighbors, their
“isolation events” are independent; thus the prob-
ability that no node in S gets isolated is at most
(1 − (log2 n)/n)n/d2

< 1/e (using the inequality
(1−x)1/x < 1/e for any x). In other words, such an
event happens with constant probability.

A star graph has only one node with degree ex-
ceeding 1 and still manages to stay connected with

constant probability in the above model. However.
in a P2P system we want no node to be of substan-
tially above-average degree. Under such a restriction
the lemma can be strengthened: the average degree
must be Ω(log n). Space precludes a proof.

As a particular case, a network partition can also
be thought of as a collection of failures of the nodes
on the “other side” of the partition; tolerating a fail-
ure rate of 1/2 means that the larger half of the system
will stay connected after the partition. This argument
generalizes to failure probabilities p 6= 1/2; roughly
speaking, d must be such that the expected number
of surviving neighbors pd = Ω(log n).

A similar argument can be applied to the main-
tenance traffic. Liben-Nowell, Balakrishnan, and
Karger [7] introduce the notion of “half-life” as the
time it takes for a peer-to-peer network to replace
half its nodes through departures and new arrivals,
and prove that every node must be notified about
Ω(log n) other nodes per half-life if the network is
to remain connected.

Most DHTs support some mechanism for han-
dling nonbyzantine failures, but few provide analyt-
ical results. The Chord DHT uses “successor lists”
of O(log n) neighbors of each node and proves that
with these successor lists, the network remains con-
nected (and continues to route efficiently) with high
probability even if half the nodes fail simultaneously.
Building on the successor lists, Liben-Nowell, Bal-
akrishnan and Karger show how to limit maintenance
traffic to O(log2 n) per node per half-life (compared
to the lower bound of Ω(log n).

Saia, Fiat, Gribble, Karlin, and Saroiu [12] pro-
vide a DHT with analytical results in the presence of
malicious nodes. Their DHT is “adversarially fault
tolerant” in that an adversary killing any half of the
nodes (not necessarily at random) is only able to dis-
connect an ε fraction of the surviving nodes. To
achieve this high level of fault tolerance, however,
some performance is sacrificed. Each node main-
tains O(log3 n) state. Lookups take O(log n) time
but require O(log3 n) messages. Every data item
must be replicated log N times. Metadata about var-
ious items must be distributed to O(log3 N) nodes.

2.3 Load balance

All the DHTs discussed above offer some load bal-
ance, in both the amount of data stored and the
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amount of routing traffic carried. In general, any one
node-load is within an O(log n) factor of the aver-
age load over the system with high probability. The
Chord DHT shows how, by replicating each node
into O(log n) “virtual nodes,” it is possible to im-
prove the maximum-to-average load ratio to a con-
stant (arbitrarily close to 1). A similar technique can
be applied to many of the DHTs mentioned above,
including Koorde. However, such replication does
increase the state needed at a node, and the mainte-
nance overhead, by a logarithmic factor. Thus, the
schemes with optimal degree and hop count (Ko-
orde and Viceroy) must give up their optimality if
constant-factor load balance is to be achieved. It is
an open question to find a system that is both degree
optimal and load balanced.

3 Koorde: A constant-degree DHT
Koorde combines Chord with de Bruijn graphs. It
looks up a key by contacting O(log n) nodes with
O(1) state per node.

Like Chord, Koorde uses consistent hashing [6] to
map keys to nodes. A node and a key have identifiers
that are uniformly distributed in a 2b identifier space.
A key k is stored at its successor, the first node n that
follows k on the identifier circle, where node 2b − 1
is followed by node 0. The successor of key k is
identified as successor(k).

3.1 De Bruijn graphs and routing

Koorde embeds a de Bruijn graph on the identi-
fier circle for forwarding lookup requests. A de
Bruijn graph has a node for each binary number
of b bits. A node has two outgoing edges: node
m has an edge to node 2m mod 2b and an edge
to node 2m + 1 mod 2b (see Figure 1). In other
words, a node m points at the nodes identified by
shifting a new low order bit into m and dropping
the high order bit. We represent these nodes using
concatenation mod 2b, writing m ◦ 0 = 2m mod 2b

and m ◦ 1 = 2m + 1 mod 2b.
If we assume a P2P system in which every number

corresponds to a node (i.e., 2b = n), de Bruijn rout-
ing works as follows. With 2b nodes in the system,
consistent hashing will map key k to node k, since
successor(k) is k.

Routing a message from node m to node k is ac-
complished by taking the number m and shifting in
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Figure 1: A de Bruijn graph for b = 3.

procedure m.LOOKUP(k, kshift)
if k = m then return (m) /*m owns k*/
else {

t = m ◦ topBit(kshift);
return (t.lookup(k, kshift 〈〈 1));

}

Figure 2: Lookup of key k at node m in a de Bruijn
graph. kshift is the key k as shifted by previous iter-
ations. On the first call kshift = k.

the bits of k one at a time until the number has been
replaced by k (see Figure 2). Each shift corresponds
to a routing hop to the next intermediate address; the
hop is valid because each node’s neighbors are the
two possible outcomes of shifting a 0 or 1 onto its
own address. Because of the structure of de Bruijn
graphs, when the last bit of k has been shifted, the
query will be at node k. Node k responds whether
key k exists.

This lookup algorithm will contact b = O(log n)
nodes, since after b left shifts the query is at the des-
tination node. To support the forwarding step, each
node maintains information only about its two de
Bruijn neighbors.

3.2 Koorde routing

Most P2P systems contain only a few of the pos-
sible 2b nodes, because only a subset of the nodes
will have joined at any given point in time and b is
large for other reasons (e.g., to avoid collisions its
size is determined by the output of a cryptographic
hash function). Thus, some points on the identifier
circle correspond to nodes that have have joined the
system, while many points on the ring correspond to
“imaginary” nodes.

To embed a de Bruijn graph on a sparsely popu-
lated identifier ring, each joined node m maintains
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knowledge about two other nodes: the address of the
node that succeeds it on the ring (its successor) and
the first node, d, that precedes 2m (m’s first de Bruijn
node). Since the de Bruijn nodes follow each other
directly on the ring, there is no reason to keep a vari-
able for the second de Bruijn node (2m + 1); it is
likely that d is also the predecessor for 2m + 1.

To look up a key k, the lookup algorithm must
find successor(k) by walking down the de Bruijn
graph. Since the de Bruijn graph is “incomplete,”
Koorde simulates the path taken through the com-
plete de Bruijn graph, passing through the immediate
real predecessor, predecessor(i), of each imaginary
node i on the de Bruijn path.

Figure 3 shows Koorde routing as an extension of
the de Bruijn routing of Figure 2. Koorde passes the
current imaginary node i as an argument to the rout-
ing function. In a single routing step Koorde sim-
ulates the hop from imaginary node i to imaginary
node i ◦ topBit(k), shifting in k. Koorde does so by
hopping to m.d, which will have value near 2m and
hopefully be equal to predecessor(i ◦ topBit(k)). If
so, Koorde iterates the next routing step.

If at every hop, d is indeed the predecessor of
i ◦ topBit(k), then Koorde contacts b nodes, where
b is the number of bits in identifiers, because the al-
gorithm shifts i left 1 bit at each hop.

Unfortunately, although m.d is by definition the
closest predecessor of 2m, it may not be the clos-
est predecessor of i ◦ topBit(k)—because the nodes’
random distribution around the ring is not perfectly
even, some other node might interpose land in be-
tween m.d and 2i. Koorde checks for this case,
and corrects. When the node d receives the query,
it checks whether it is indeed the predecessor of
i◦ topBit(k) by examining its own successor pointer.
If it is, Koorde takes its next de Bruijn hop. If not,
it forwards the query forward along the ring, fol-
lowing successor pointers, until the predecessor of
i ◦ topBit(k) is encountered.

As in Section 3.1, the algorithm makes b calls to
d.lookup(). To bound the overall work, we must
bound the number of successor lookups.

Lemma 3.1. In the course of doing a lookup, with
high probability the number of routing hops is at
most 3b.

Proof. To conserve space we analyze the expected

procedure m.LOOKUP(k, kshift, i)
if k ∈ (m, successor] then return (successor)
else if i ∈ (m, successor] then return (
d.lookup(k,

kshift 〈〈 1,
i ◦ topBit(kshift)))

else return (successor.lookup(k, kshift, i))

Figure 3: The Koorde lookup algorithm at node m. k
is the key. i is the imaginary de Bruijn node. d con-
tains the predecessor of 2m, and successor contains
the successor of m.

number of hops; a high probability extension is stan-
dard. In a single step simulating the advance from
imaginary node i to imaginary node i◦ topBit(k), we
first move from node m = predecessor(i) to node
d = m.d and then advance from d to predecessor(i ◦
topBit(k)) using successor pointers. The nodes we
traverse this way are precisely the ones located in
identifier space between 2m and 2i + 1. Condi-
tioned on the values m and i, the fact that nodes
are randomly distributed around the ring means that
the the odds of each node landing in between these
two values is (2i − 2m + 1)/2b, so the expected
number of nodes in this region of identifier space
is u = n(2i − 2m + 1)/2b. To remove the condi-
tioning on m and i, notice that regardless of i, again
because n nodes are inserted randomly, the expected
value of i − m (distance between i and m in iden-
tifier space) is 2b/n, so the expected value of u is
n(2 ∗ 2b/n)/2b = 2.

In other words, each imaginary hop involves, in
expectation, following two successor pointers. Thus,
in total, we expect to follow b de Bruijn pointers and
2b successor pointers.

By maintaining predecessor(2m) and its succes-
sor (for a total of 3 pointers per node), we reduce
the expected number of successor hops per shift to 1,
reducing the expected routing cost to 2b.

3.3 Lookup in log n hops

The lookup algorithm described so far contacts O(b)
nodes, where b is the (large) number of bits in identi-
fiers. However, we can reduce the number of hops to
O(log n) with high probability by carefully selecting
an appropriate imaginary starting node.
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In Section 3.2, we started lookup with the node m
on which the query originated. But since m is re-
sponsible for all imaginary nodes between itself and
its successor, we can choose (without cost) to simu-
late starting at any imaginary de Bruijn node i that is
between m and its successor. If the ring contains few
real nodes, then only i’s top bits are significant; we
can set i’s bottom bits to any value we chose without
leaving m’s region. If we choose i’s bottom bits to be
the top bits of the key k, then as soon as the lookup
algorithm has shifted out the top bits of i, it will have
reached the node responsible for k. With high prob-
ability, the distance in identifier space from m to its
successor exceeds 2b/n2, which means that m’s re-
gion contains imaginary nodes with all possible val-
ues of the lowest lg(2b/n2) = b − 2 lg n significant
bits; this means we can set this many bits to equal
the high order bits of k and be left to shift out only
the 2 lg n most significant bits of the current address,
which requires O(log n) hops.

3.4 Maintenance and concurrency

Just like finger pointers in Chord, Koorde’s de Bruijn
pointer is merely an important performance opti-
mization; a query can always reach its destination
slowly by following successors. Because of this
property, Koorde can use Chord’s join algorithm.
Similarly, to keep the ring connected in the presence
of nodes that leave, Koorde can use Chord’s succes-
sor list and stabilization algorithm.

Chord has a nice “self stabilizing” property in
which a ring consisting only of successor pointers
can quickly construct all its fingers by pointer jump-
ing; it is unclear whether the Koorde can similarly
self-stabilize.

4 Extensions
To allow users to trade-off degree for hop count, we
extend Koorde to degree-k de Bruijn graphs. When
choosing k = log n, Koorde can also be made fault
tolerant.

4.1 Degree-k de Bruijn graphs

Koorde can be generalized to provide a simple opti-
mal trade-off between routing table size and routing
hop count. In a traditional de Bruijn graph, a node
m has edges to nodes 2m and 2m + 1. This graph
allows us to shift in one new address bit with a single

edge traversal. The same idea can be generalized to
a different, non-binary base. For any k, a base-k de
Bruijn graph connects node m to the k nodes labeled
km, km+1, . . . , km+(k− 1). The resulting graph
has out degree k but, since we are shifting by a factor
of k each time, has diameter logk n.

This idea can be carried over to Koorde. Instead
of letting node m point at predecessor(2m), each
Koorde node points at predecessor(km) and the k
nodes immediately following. It can be shown that
under this scheme, we expect to use only a constant
number of hops through real nodes to simulate a sin-
gle imaginary-node hop (correcting a single base-k
digit). We thus expect to complete the routing in
O(logk n) hops, matching the optimum lower bound
for degree k networks.

4.2 Fault tolerance

Base Koorde has constant degree and thus, by the
Lemma 2.2 earlier, cannot be fault tolerant against
nodes failing with constant probability. To achieve
such fault tolerance, we need to increase to mini-
mum degree log n. The approach is straightforward.
To provide fault tolerance for immediate successors,
we use the “successor list” maintenance protocol de-
veloped for Chord: rather than m maintaining only
its immediate successor, it maintains the O(log n)
nodes immediately following it. Even if nodes fail
with probability 1/2, at least one of the nodes in each
successor list will stay alive with high probability. In
such case, routing is always possible, at worst by fol-
lowing live successor pointers to the correct node.

Koorde must provide a similar “backup”
in case the “distant” node that m points at,
predecessor(2m), fails. If that node fails, its
immediate predecessor on the ring becomes the
new “correct” node for m to point at. Therefore,
Koorde proactively points, not at predecessor(2m),
but at O(log n) nodes on the ring immediately
preceding 2m. One might think that the easiest way
to provide such a set is to use a “predecessor list”
construction similar to the successor list. However,
this construction would violate several of the key
invariants used to prove correctness of the Chord
protocol. In particular, unlike successor pointers,
predecessor pointers may point “off the ring” at
nodes that have initiated the Chord join protocol
but have not yet completed it; pointing at such new
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nodes could make lookup operations incorrect.
Fortunately, a slightly different approach does

work. To set up its pointers, node m uses a lookup to
find not the immediate predecessor of 2m, but the
immediate predecessor p of 2m − x, where x =
O(log n/n) is chosen so that, with high probability,
Θ(log n) nodes occupy the interval between 2m− x
and 2m. Node m can retrieve the successor list of
p, which gives it a set of O(log n) nodes reaching to
point 2m on the interval. These nodes provide the
necessary redundancy: even if half the nodes fail,
with high probability m will have a pointer to the
immediate predecessor of address 2m. This scheme
requires an estimate of n, which is easy to achieve in
practice by considering the distribution of a nodes’
successors.

This attempt to gain fault tolerance has eliminated
the constant degree attraction of Koorde. But Ko-
orde can make good use of the extra degree: in-
stead of working with a base-2 de Bruijn graph, Ko-
orde can work with a base-O(log n) de Bruijn graph.
With such a graph, Koorde has fault tolerance and
the number of routing hops is O((log n)/ log log n),
which is optimal.

5 Related work
We are not the first to use de Bruijn graphs in rout-
ing [1, 3, 13, 14], and concurrent with our work oth-
ers have noted their application to DHTs [4]. Com-
pared to the related work, our primary contribution
is how to simulate a lookup using a de Bruijn graph
in a sparsely-populated identifier space.

Koorde’s approach of using de Bruijn graphs is
different than D2B’s [4]. The D2B DHT attempts
to organize its nodes such that the nodes form a de
Bruijn graph, but cannot guarantee that the graph
constructed is a de Bruijn graph. As a result, D2B
can guarantee only with high probability that the out
degree is O(1). D2B also modifies node identifiers
to create a de Bruijn graph. Koorde puts no restric-
tions on applications in how they choose node identi-
fiers. Finally, Koorde inherits Chord’s algorithms for
handling concurrent joins; the D2B technical report
doesn’t discuss this topic.

6 Summary
Koorde allows its users to tune the out-degree from
2 to O(log n) to achieve hop counts ranging from

O(log n) to O(log n/ log log n). This lets users trade
maintenance overhead against hop count, which may
be important in practice for systems in flux. An
implementation of Koorde is available as part of
the Chord software distribution (http://www.
pdos.lcs.mit.edu/chord).
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