
Altruistic Routing in Structured P2P Networks

Sukumar Ghosh Alina Bejan Amlan Bhattacharya

{ghosh, abejan, bhattach}@cs.uiowa.edu

Department of Computer Science
University of Iowa

Abstract

Request patterns in P2P networks are not uniform, and the cost of communication depends

on the traffic flows among peers. This paper illustrates how the processes in an overlay network

can use the information about traffic flow pattern to modify their routing tables and minimize

their communication costs. Two different adaptation strategies: selfish and altruistic are de-

scribed and analyzed. The selfish protocol modifies the routing tables to suit each process

individual needs, and is easy to implement, but the improvements are limited. Compared to

this, the altruistic protocol that adjusts routing tables based on the needs of other processes,

promises a much better performance. Experimental results support this observation. Despite

the promise, there are concerns about the applicability of the altruistic protocol in an untrusted

P2P network environment.

Keywords and Phrases. P2P network, adpative overlay network, flow adaptation, route

caching, selfish and altruistic policies.

1 Introduction

Motivation. A P2P network is an Internet-based distributed system for the efficient and
scalable location of remote objects without any central authority. The past few years have
witnessed a phenomenal growth of these network targeted towards a variety of applications.
For all such networks, efficient routing is a key concern. We focus on structured P2P
networks that use distributed hash tables (DHT).

Two metrics of performance of DHT-based P2P networks are the space complexity for the
individual nodes, and the time complexity for searching remote objects - both should be as
small as possible. The space complexity includes the space needed to store the routing table,
as well as the time needed to store replicas of objects. The time complexity, on the other
hand, translates to hop count if geographical proximity between nodes is disregarded. The
space and time complexities, in general, conflict with one another. A sparse interconnection
network like a ring has a constant size routing table, but the routing distance for queries may
be as large as O(n), whereas for a completely connected topology all queries are resolved in
a single hop, but at the expense of a routing table of size O(n). Existing P2P like CAN [7],
Chord [10], Pastry [9], Tapestry [12] use interconnection topologies and routing mechanisms
that strike a balance between these two extremes.

Despite providing good solutions for meeting the conflicting goals of fast lookups and
small number of states per process, these networks provide a performance that is immune



to variations in the traffic flow. In real life however, such variations do exist. We quantify
performance as follows: Let f(i, j) denote the flow from i to j (measured by the number of
packets delivered per unit time), and l(i, j) denote the latency (as measured by the number
of hops) needed for one such communication. Two different types of cost functions may be
used as yardsticks of performance:

Private cost. For each process i, Ci =
∑

j f(i, j).l(i, j), and

Total cost. C =
∑

i,j f(i, j).l(i, j) =
∑n

i=1 Ci.

The above two costs interplay in different ways. While a low value of the total cost
reflects an efficient network, individual processes may have a competitive goal, much in
the spirit of games. Indeed, a process that is responsible for routing the communications
between other processes may try to use a routing policy that minimizes its own cost, possibly
at the expense of others. Such market based approaches are being studied in internet
routing. For example, in the Wardrop model of routing, Roughgarden and Tardos [11]
proved the important result that selfish routing policies (where individual processes are free
to pick a routing policy that serves their self-interests) increase the routing cost by only a
constant factor from the optimal cost. The Wardrop model is defined by a tuple (G, r, l),
where G = (V,E) defines the network topology, r : E → ℵ represents the network flow
where ℵ denores the set of non-negative integers, and the edge latency l is a non-decreasing
function of the flow through an edge.

Our model and problem are different. Given a flow between every pair of nodes, our goal
is to minimize the communication cost by modifying the routing tables of the individual pro-
cesses. We propose to augment each routing table using a small predefined number of cache
entries, that will accelerate the routing. Thus, routing table reconfiguration will include
modification of the routing cache entries. We assume that processes acquire knowledge of
the flow using a profiling algorithm that runs in the background. The variables are (1) the
routing table entries of the individual nodes, and (2) routing policies (although we restrict
ourselves to the well-known DHT-based routing policies or their variations). Given the flow,
we want the processes to self-organize their routing tables for minimizing the cost functions.
The routing tables determine the immediate successor of each nodes in the overlay network.
This is an exercise in adaptation, where the network topology is required to adapt to the
flow for minimizing the cost functions. Thus, G itself is not constant. Furthermore, com-
pared to the Wardop model, the latency function is simpler in that it only reflects the hop
count, and is independent of the flow through the links.

The problem under consideration involves a subtle interplay between cooperation and
competition. Processes cooperate with one another to guarantee that eventually every
packet reaches its destination. Processes also cooperate when the goal is to minimize of the
global cost. The competitive aspect surfaces when the goal is the minimize the private costs:
each process may want to minimize its private cost at the expense of other processes. The
latter part can be viewed as a non-cooperative game – the target configuration will reflect
a Nash equilibrium, where no user can unilaterally decrease its private cost by unilaterally
changing its strategy.

Related work. On-demand routing is a common feature in mobile ad-hoc networks [?] - the
primary issues are reachability and loop-free routing. In classical networks, flow-adaptivity
has been addressed at different layers. For example, TCP congestion control addresses flow

2



adaptivity, although the solution targets end-to-end control instead of tweaking the network
layer. In QoS maintenance and error control, Ludwig [6] proposed a method of service
differentiation by tailoring link layer error control to the QoS requirements of flows sharing
wireless links. In P2P networks, communication cost reduction via query and result caching
has been proposed for Gnutella [?]. Wang et al [?] described a distributed caching and
adaptive search protocol for reducing the search traffic in Gnutella network. In structured
networks, Bejan and Ghosh [2] showed how the information about flow patterns can be
used to identify clusters of interest, restructure the network to lower the cost of intra-cluster
communication, and reduce the average communication cost incurred by the processes. On
the same line of using clustering of peers we can cite Triantafillou’s work [13] that combines
selfishness and altruism at the overlay level. The difference is that altruism refers to the
ability/willingness of peers to contribute their resources rather than the willingness of peers
to route queries on behalf of other peers, at the expense - sometimes - of increasing the hop
count for its own queries. The difference is major, since our selfishness property manifests
itself at the routing level, and not at content one. The idea of selfish behavior in P2P
systems appears in [?] as well, but it concerns replication of resources by peers that behave
selfishly. Again the selfishness is reflected at the content level, more precisely the paper
studies selfish caching from the game theory perspective. Finally, numerous distributed
systems develop adaptation protocols in the application layer for a variety of applications.

Contributions. This paper discusses algorithms for self-optimization using the competitive
view, where each process intends to minimize its private cost. We do not consider content
replication at the moment - content replication can always be used to further improve
performance on top of our proposed methods. We present two approaches. The first method
uses a selfish version of route caching 1, where the contents of the caches reflect the links with
highest flows for the individual processes. The second approach studies a counter-intuitive
protocol: altruistic route caching, where each route cache stores the highest flow links of
other processes only, instead of its own. We analyzed and experimented these protocols
to improvize query processing on the basic Chord network [10], and demonstrated that
altruistic route caching performs much better than its selfish counterpart under light loads.
We revisit the concern that in an environment of mutual mistrust, an altruistic policy may
be impractical. So to promote altruism (over a selfish protocol), additional measures will
be necessary, much in the spirit of coping with the freeloaders problem.

Organization. Section 2 formalizes the model and the objective of this paper. Section

3 presents a conservative routing table self-configuration algorithm that guarantees cost
minimization for a given flow. Section 4 introduces the selfish and the altruistic route
caching protocols, and analyzes their complexities. Section 5 describes the simulation
results, and proves our thesis. Finally, Section 6 contains some concluding remarks.

2 Preliminaries

We consider a structured P2P network whose interconnection graph is G = (V,E). Each
node of v ∈ V denotes a process, and each edge (i, j) ∈ E represents a directed edge

1The route cache contains the IP addresses of a small number of peers towards which queries are forwarded

using a modified routing algorithm.

3



from i and j. Each node has m edges connecting to m different peers, where m << n.
When m = dlog ne, node identifiers are hashed into keys ranging from 0 through n − 1,
and routing table entries (also called fingers) of node i point to the peers mapped to keys
(i + 1), (i + 2), · · · (i + 2m−1), the topology reduces to that of Chord [10]. The routing
distance between any pair of nodes is bounded from above by dlog ne. We will frequently
cite Chord as our base network.

Let f : V ×V → ℵ denote the network flow, where ℵ is the set of non-negative integers.
Given the flow, the network configuration and the routing policy, one can easily compute
the total cost of communication in the network. Performance demands these costs to be
as low as possible. When the routing tables are static and independent of the flows, the
routing cost is not optimal. To realize the feasibility of routing table reconfiguration for
optimizing communication cost, consider the following case of Chord: a node i frequently
communicates with another node j, but each communication from i to j takes log n hops.
Clearly, the communication cost can be reduced if i sets up a finger directly pointing to j. If
this finger replaces an existing finger, then this reconfiguration of the routing table will have
impact on other flows in the network. Another possibility is to leave the existing fingers
undisturbed, but use a small number k (k is of the order of m) of extra fingers that will
serve as a cache that will accelerate the routing. Such optimizations are the cornerstones of
our proposal. Sometimes, a reduction in the routing distance between some pair of nodes
may come at the expense of an increase in the routing distances between some other pair
of nodes which do not frequently communicate with one another. Common engineering
practices encourage making the common case faster. Since caches have limited entries,
routing caching policies have to deal with conflicting requirements. Given a flow and a
small number of cache entries per node, evolving a policy that will redefine routing tables
and reduce the overall communication cost makes an interesting problem to study. A policy
is acceptable, when it satisfies the following three requirements:

Stabilization. Given a flow f , the routing table reconfiguration algorithm must converge
to a final configuration, and continue in that configuration unless the system records a
change of flow.

Reachability. The terminal configuration of the routing tables must guarantee that each
packet sent by a node reaches its destination within a bounded number of hops.

Cost optimization. The communication cost for the given traffic flow must be as low as
possible, certainly lower that what it was for the unoptimized network.

In this paper, we rule out content caching [?] (used in Gnutella) in favor of route caching
since the latter has much lower space overhead.

2.1 The routing policy

We limit ourselves to a form of route caching where a cache entry is used as the last hop,
i.e. a cache hit signals packet delivery to the destination node. For any packet directed
towards a desination, if no such entry exists in an intermediate node, then the packet is
routed using the existing fingers. As an alternative, one could also use the cache entries to
expedite interim progress, but our experiments revealed that it did not have any noticeable
impact on accelerated delivery. The routing policy can thus be summarized as follows:

4



if ∃j ∈ cache : j points to destination
then use j to route the packet
else follow the traditional Chord routing

fi

Using the above routing policy, the following theorem trivially holds:

Theorem 1. The number of hops required to route any packet is bounded from above by
log n.

Proof. Until there is a cache hit, the basic routing of Chord is applicable. When a hit
occurs, the destination is reached in the next hop. 2

The improvements in routing will depend on the content of the routing cache. A large
number of hits within a small size cache will lower the communication cost. A clever choice
will lead to more cache hits, and reduce the communication cost. In this paper we discuss
various route caching strategies to maximize cache hits and accelerate routing.

3 Self-optimization protocols

Any strategy for route reconfiguration must satisfy the requirements of stabilization, reach-
ability, and cost optimization. Theorem 1 establishes reachability, so we will focus on the
other two requirements.

A trivial lower bound of the communication cost is C =
∑

i,j f(i, j). No doubt this is
very loose as it applies to a completely connected graph only. But it serves as a reference
with respect to which we can compare the communication cost. Computing a tighter lower
bound is an open problem. Note that finding an optimal solution that leads to the min-
imum communication cost is extremely complex. In [8], Reshef addressed the problem of
constructing the minimum communication cost spanning tree (MCT) for a weighted graph.
The communication cost between any pair of nodes is the sum of weights of all the edges in
the path between the two nodes, and the total communication cost is the sum of all such
costs for all destination nodes. Reshef showed that even when all weights are 1, the problem
is NP-hard. Our problem reduces to the MCT problem when the flow between every pair
of nodes is identical.

In this section, we describe two route caching protocols that adapt to the flow, and
reduce communication costs.

3.1 A selfish protocol

Let the size of the routing cache be k (1 ≤ k ≤ log n). There is no rational basis for this
except for the fact that it should be small. The essence of the selfish protocol is as follows:

Each node i sorts the flows to all the other nodes j 6= i in a descending order,
and sets its routing fingers in its cache to the top m flow destinations in this
order.

5



Since the actions do not interfere with one another, the routing tables will trivially
stabilize after n steps or one round. Although the traffic to the top k destinations will
reach in one hop, traffic towards other destinations will not receive any special help from
any other node, unless such a destination matches with one of the top k flow destination of
a node en route.

Complexity analysis. Measurements reveal that traffic on P2P networks follows a Zipf
distribution [3, 4]. We approximate a Zipf distribution by identifying a variable h that
defines the number of destination nodes towards the flow is substantially higher than the
flows to the remaining nodes. We call these nodes the top flow destination. In computing
the cost, we will consider these nodes only, and ignore the role of the remaining nodes.

Selfish route caching helps deliver packets to k-out-of-h top flow destinations in a single
hop. For the remaining (h− k) destinations, we will calculate the expected number of hops
needed before a cache hit occurs.

If the k fingers in the cache are randomly oriented, then the probability that a packet
originating from a node i will hit the cache of a neighbor j is k

n−1
, the latter term reflects

the probability that destination of this packet also is one of the top k destinations (stored
in the cache) of node j. If this is not true, then the probability that this packet is not
delivered in two or fewer hops is 1− k

n−1
. This packet will then check if its destination hits

the cache of the next node, and the probability that the packet is delivered in three hops is
k

n−1
(1− k

n−1
). Continuing these arguments, it is easy to show that the probability of cache

hit after r hops is

k

n − 1
.(1 −

k

n − 1
)r−2

Let x = 1 − k
n−1

. Then the expected number of hops before a cache hit occurs follows

a geometric distribution x.(1 − x)r−1.

It follows that the expected number of hops E(l) for a cache hit is 1
x
, which equals n−1

k
.

When k ≤ log n and n is large, the expected hop count for a cache hit is much greater
than log n since n−1

k
>> log n. However, the primary fingers guarantee delivery of every

packet within log n hops. Therefore packets to the remaining (n − k − 1) destinations are
expected to reach their destinations before any cache hit occurs.

The average hop count for the basic Chord is log n
2

. If a fraction α of the total traffic
towards the top flow destinations is directed to the top k destinations, then k = α.h. The
private communication cost will be h.(α + (1 − α). log n

2
) times the average flow towards a

top flow destination.

So the expected improvement in the average hop count with selfish caching is

α + (1 − α). log n
2

log n
2

.

For a network with 100,000 nodes, if h = 200 and k = 16, then α = 0.08, and the
expected improvement in the average hop count is only 2% which is marginal. To make a

6



difference, the cache size must be larger. In this case, a cache of size 50 will improve the
hop count by 28%.

3.2 An altruistic protocol

The altruistic approach is just opposite to the selfish approach:

Each node i monitors the flows originating from other nodes j 6= i and being
routed through i, sorts these flows in the descending order, and sets its routing
fingers in its cache to the top k flow destinations in this order.

The altruistic protocol allows a node i to route packets to its top destinations using the
routing fingers in the cache of other nodes {j : j 6= i}. The intuition here is that, if a node
does not behave in a selfish way, then it will get the support of all other nodes for routing
its packets to its top destination.

Complexity analysis. Consider a lightly loaded system, where only a small number of
nodes are active, and most traffic is directed to only a few preferred destinations. Further-
more, traffic for each active node in the network follows the Zipf distribution. A packet
originating at a node i and directed to a top flow destination will first reach one of its
k neighbors as determined by its routing table. Since the contents of its local cache i are
determined by flows originating at other nodes j 6= i, it is unlikely that the packet will reach
its destination in one hop. However, there is a high probability that one of the neighbors of
i has a routing cache entry directed to the final destination of this packet. In the absence
of any contention this probability is a guarantee. Furthermore, if the top flow destinations
are well scattered in the key space, then the packets can make the best use of the routing
caches at each destination.

With no contention, the number of cache hits after the first hop will range between k

and m.k (Fig 1). The lower bound corresponds to the case when all the top flow destinations
lie between the nodes pointed by two consecutive fingers of the routing table. The upper
bound corresponds to the case in which the top flow destinations are evenly scattered
so that between the nodes pointed by two consecutive fingers, there are k such nodes.
This estimate disregards the cases in which the separation between the nodes pointed by
consecutive fingers is less than k, or one of the existing fingers in the routing table already
points to a top flow destination.

Since there are n.k cache entries in the entire system, at most n.k destinations can
benefit from cache hits. For flows with a global rank lower than n.k there is no guarantee of
a cache hit, but the upper bound of log n steps will prevail. As more nodes become active,
contention grows, and the expected number of hops not only depends on the distribution
of the top flow destinations, but also on the ability of the individual nodes to seize a cache
entry in a node that falls on the route. If a fraction of the nodes is active, then the routing
complexity will depend on how many of the cache entries point to the top destinations of
the packets originating from the active nodes.

The altruistic protocol performs particularly well under light loads, since the route
caches of the inactive nodes en route the destination expedite the delivery of the packets
originating from the active nodes. That said, the stabilization of the routing caches is an

7



Figure 1: Two cases of cache hits: (a) has much lower hits than (b).

overhead. The intermediate nodes sense and profile all packets routed through them, and
modify the routing caches on-the-fly. Unless the routing cache entries stabilize following a
change in the flow, it is not feasible to guarantee any performance improvement in packet
delivery beyond the lower bound.

Let h be the number of top destinations of a process in a network of size n. We will
assume that these are uniformly scattered over the entire key space. The actual value of
h relative to n will depend on a parameter α: here we approximate Zipf distribution by a
rectangular envelope and assume that only α fraction of the total traffic is directed towards
the top destinations – traffic towards the remaining destinations is negligibly small.

We will compute the expected number of hops needed to reach an arbitrary destination
(from the set of top destinations) using altruistic caching. Consider Figure 1b, and without
loss of generality, let process 0 generate a request to one of its top destinations top. De-
pending on the possible location of top on the Chord ring, we will compute the probability
of reaching top in a given number of hops.

Case 1. 2n−1 < top < 2n

The probability of 2n−1 < top < 2n is 1
2
. We will compute the probability of a packet

reaching top in two hops. Unless top = 2n−1 + 2j(j < n− 1) (which has a low probability),
routing has to be done using one of the cached fingers of node 2n−1. If there are k fingers
available in the cache, then to reach the destination in two hops, the flow has to rank in
the top k of all flows routed through that node. The contenders are packets originating
from nodes 2n−1 − 2j(j < n − 1). The fraction of packets originating from a source node
2n−1 − 2q and vying for a cache entry is h

2n−q . Therefore the number of contenders will be

h
2

+ h
4

+ h
8

+ · · · + h
2n−1

8



For large networks, this approximates to h. Thus the probability that the flow from
node 0 towards top will be able to rank in the top k is k

h
, and the probability that a packet

will reach top in two hops is 1
2
.k
h
.

Case 2. 2j < top < 2j+1

Using similar arguments, it is possible to show that ∀j : 1 ≤ j ≤ n − 1, the probability
that a destination top: 2j < top < 2j+1 is reached in two hops is 1

2n−j .k
h
. (See Appendix).

Since top is an arbitrary top destination, the probability of reaching top in two hops is

k
h
.(1

2
+ 1

4
+ 1

8
+ · · · + 1

2n−1 )

= k
h

(for large n)

Let p = k
h
. It can be shown that the probability of reaching top in r hops is p.(1− p)r−1

Thus the hop count is a random variable with a geometric distribution, from which it follows
that

E(hop count to reach top) = 1 + h
k

However, the maximum number of hops to any destination cannot exceed log n. So the
expected hop count is min(1 + h

k
, log n).

In a P2P network, typically not all nodes are active at the same time. Let β be the
fraction of nodes that are active. We will call β the activity ratio. When this factor is taken
into account, contention for cache entries reduces by a factor β and the expected hop count
to reach an arbitrary top destination becomes min(1 + βh

k
, dlog ne).

Let us compare this with the routing efficiency obtained via selfish route caching. First,
the routing complexity of selfish caching does not depend on the activity ratio, since re-
gardless of the traffic, other nodes are not required to cooperate by lending cache fingers.
So, if h >> k then traffic towards (h− k) of the h destinations is unlikely to use the cache,
and suffer from the average hop complexity of log(n). Assume that n = 100, 000 (thus
dlog ne = 17), and h = 500. Here (500−17) = 481 will be reached in approximately 9 hops.
However, using altruistic caching, when β = 0.1, the routing distance is 4 hops. Altrusitic
caching thus performs much better when the system is lightly loaded. The performance is
expected to get worse when the activity ratio increases.

We need to include a graph here showing the theoretical results

4 Flow profiling

The first step in flow-adaptive routing is flow profiling. A naive approach is for each node
i to count the number of packets to each destination j 6= i, sort them, and set the routing
cache entries to the top k flow destinations. This is not acceptable due to space complexity
reasons. Counting and recording all flows to every destination will need O(n) space, and
affect the scalability, particularly when the routing table takes up only O(log n) space. We
therefore adopt a variation of a caching protocol that performs an approximate sorting of
the top k flow destinations using O(k) space. The algorithm is described below.

9



Consider a buffer of size O(k). For any node, this buffer stores the identifiers of the
packet destinations. Initially the buffer is empty. The lifetime of an entry is measured by
the counter variable, which is refreshed with every new query for that specific key. If a key
is not queried for, its counter will eventually reach 0 and thus automatically disappers from
the fats table. When node i sends out a packet to node j, it executes the following steps:

Cache reconfiguration algorithm for node i

var FT; // the Fast Table
var current; // the current number of entries in the fast table

if ∃ 0 ≤ t < current : FT [t] == key →
FT[current++] = key;
FT[current].counter = MAX-COUNTER;
for i=0 to current-1

FT[i].counter–;
fi

if not ∃ 0 ≤ t < current : FT [t] == key :→
if ∃ 0 ≤ l < current : FT[l].counter ==0

FT[l] = key;
FT[l].counter = MAX-COUNTER;

fi

for i = 0 to current
if l 6= i : FT[i].counter –; fi

fi

Thus, in case of a buffer hit, the entry is removed from the current location and placed
at the front, and the remaining entries are compacted. Each buffer entry corresponds to an
entry in the routing cache.

Clearly this algorithm identifies the set of nodes with which a given node has communi-
cated most recently. Any node that has not received a communication during tha past max

steps automatically drops out of the buffer. The flow profiling algorithm for the altruistic
protocol works similarly, except that the buffer entries contain destination identifiers of
packets originating at other nodes.

Theorem 2. For a given flow, the routing cache entries stabilize in a bounded number of
steps.

Proof. Per the routing algorithm, cache entries define the last hop of route. As a result,
while the flow profiling is in progress, the cache entries may change, but each such change
does not affect any other route. Thus there is no cyclic dependency. Therefore, in a bounded
time after the last flow change has taken place, the cache entries will stabilize. 2

10



5 Simulation results

We conducted experiments on a P2P simulator specifically geared towards Chord. Our
simulator could handle a system of size up to 5000 nodes. The request pattern was assumed
to follow a Zipf distribution with α = 1.0. We conducted the experiments with 100000
events, and assumed that join and leave operations account for 1% of the total set of events
(the rest being lookups), and the fast table size of log(n). The experiments allowed existing
nodes to leave and new nodes to join per the original Chord protocol.

2500 3000 3500 4000 4500 5000 5500
6

6.5

7

7.5

8

8.5
x 10

5

no. of nodes 

no
. o

f h
op

s 

 

 

selfish

altruistic

normal

partially altruistic

Figure 2: Comparative performance of the four routing algorithms.

Figure 2 shows the improvements achieved by the selfish and the altruistic caching
protocols with a cache size of log n per node. The simulation clearly confirms that altruistic
caching leads to faster routing.

Figure 3 and Figure 4 compare the effectiveness of the two caching mechanism by com-
paring the hit ratios in selfish and altruistic caching.

Figure 5 shows the impact of system load. As expected, the improvements caused by
altruistic route caching is much more prominent when the activity ratio is low. The system
load does not have any significant impact when selfish caching is used.

6 Conclusion

Our results clearly show that altruistic route caching significantly improves the performance
of routing in structured P2P networks. Both selfish and altruistic versions are self-adaptive.
Although the altruistic protocol has a better performance, there is some concern about
whether this can be adapted in practice. Despite cooperation from most peers, each peer

11



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

node id 

hi
t r

at
io

 fo
r 

se
lfi

sh

Figure 3: Hit ratio in selfish routing

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

node id 

hi
t r

at
io

 fo
r 

al
tr

ui
st

ic

Figure 4: Hit ratio in altruistic routing.

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.78

0.8

0.82

0.84

0.86

0.88

0.9

% of nodes active

no
 o

f h
op

s 
in

 a
ltr

ui
st

ic
/ n

o 
of

 h
op

s 
in

 s
el

fis
h

Figure 5: The impact of system load on the relative performance of altruistic and selfish
routing

also has some degree of mistrust against a fraction of them, and might wonder: I am using
altruistic caching, but what if others follow the selfish protocol? In terms of game theory,
Nash equilibrium corresponds to every peer using the selfish protocol. This is an inferior
but stable equilibrium, since no peer can unilaterally improve its payoff (i.e. performance)
by switching to the other protocol. There is remote similarity with the freeloaders problem,
and to promote altruism that will lead to a superior but unstable equilibrium, one has to
introduce enough disincentive against the use of selfish caching.

References

[1] Abraham, I., Awerbuch, B., Azar, Y., et al. A generic scheme for building overlay
networks in adversarial scenarios. IPDPS 2003.

[2] AODV - mobile ad-hoc paper ... ?

[3] Bejan, A. Ghosh, S. Self-Optimizing DHT using Request Profiling. In Proceedings of
OPODIS 2004, pp. 87-95 (also in LNCS 3544, pp. 140-153).

[4] Chun B.G., Chaudhuri K., Wee H., et al. Selfish Caching in Distributed Systems: A
Game - Theoretic Analysis. PODC 2004.

[5] Iamnitchi, A., Ripeanu, M., Foster, I. Small-World File-Sharing Communities. IEEE
InfoCom 2004, March 2004.

13



[6] Iamnitchi, A., Ripeanu, M., Foster, I. Locating Data in Peer-to-Peer Scientific Collab-
orations. IPTPS 2002, March 2002.

[7] Kleinberg, J. The Small-World Phenomenon: An Algorithmic Perspective. STOC 2000.

[8] Ludwig, R. A case of Flow-Adaptive Wireless Links. Tech. Report UCB//CSD-99-1053,
University of California at Berkeley, 1999.

[9] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker,S. A Scalable Content
Addressable Network. ACM SIGCOMM 2001.

[10] Reshef, E. Approximating Minimum Communication Cost Spanning Trees and Related
Problems. M. Sc. Thesis, Weizmann Institute of Science, 1999.

[11] Rowstron, A. and Druschel, P. Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware) 2001, p. 329-350.

[12] Roughgarden T., and Tardös. Selfish Routing.

[13] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan, H. Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE Transactions
on Networking 11 (1) 2003.

[14] Triantafillou, P. Peer-to-Peer Network Architectures: The Next Step (Harnessing the
Symbiosis of Altruism and Selfishness). HDMS 2003.

[15] Zhao, B.Y., Kubiatowicz, J.D., and Joseph, A.D. Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. Technical Report UCB/CSD-01-1141, Com-
puter Science Division, U. C. Berkeley, April 2001.

14


