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ABSTRACT
In recent years, BitTorrent has emerged as a very popular
and scalable peer-to-peer file distribution mechanism. It has
been successful at distributing large files quickly and ef-
ficiently without overwhelming the capacity of the origin
server.

Early measurement studies verified that BitTorrent achieves
excellent upload utilization, but raised several questions con-
cerning utilization in settings other than those measured, fair-
ness, and the choice of BitTorrent’s mechanisms. In this pa-
per, we present a simulation-based study of BitTorrent. Our
goal is to deconstruct the system and evaluate the impact of
its core mechanisms, both individually and in combination,
on overall system performance under a variety of workloads.
Our evaluation focuses on several important metrics, includ-
ing peer link utilization, file download time, and fairness
amongst peers in terms of volume of content served.

Our results confirm that BitTorrent performs near-optimally
in terms of uplink bandwidth utilization, and download time
except under certain extreme conditions. On fairness, how-
ever, our work shows that low bandwidth peers systemati-
cally download more than they upload to the network when
high bandwidth peers are present. We find that the rate-
based tit-for-tat policy is not effective in preventing unfair-
ness. We show how simple changes to the tracker and a
stricter, block-based tit-for-tat policy, greatly improves fair-
ness.

1. INTRODUCTION
The peer-to-peer (P2P) paradigm has proved to be a promis-

ing approach to the problem of delivering a large file from an
origin server to large audiences in a scalable manner. Since
peers not only download content from the server but also
serve it to other peers, the serving capacity of the system
grows with the number of nodes, making the system poten-
tially self-scaling. BitTorrent [3] has recently emerged as
a very popular and scalable P2P content distribution tool.
In BitTorrent, a file is broken down into a large number of
blocks and peers can start serving other peers as soon as
they have downloaded their first block. Peers preferentially
download blocks that are rarest among their local peers so
∗The author was an intern at Microsoft Research during this work.

as to maximize their usefulness to other peers. These strate-
gies allow BitTorrent to use bandwidth between peers (i.e.,
perpendicular bandwidth [5]) effectively and handle flash
crowds well. In addition, BitTorrent incorporates a tit-for-tat
(TFT) incentive mechanism; whereby nodes preferentially
upload to peers from whom they are able to download at a
fast rate in return. This mechanism is especially important
since studies have shown that many nodes in P2P systems
tend to download content without serving anything [7].

The soundness of these architectural choices is borne out
by the success of the system in actual deployment. Anec-
dotal evidence and accounts in the popular press indicate
that BitTorrent has accounted for a large and growing share
of P2P Internet traffic. Recent measurement and analyti-
cal studies [9, 11, 12] (discussed in Section 3) indicate that
BitTorrent handled large distributions effectively, as well as
showed desirable scalability properties. However, we be-
lieve that these studies leave a number of questions unan-
swered. For example:

• Biersack et al. [9] reported that clients observed high
download rates. Could BitTorrent have achieved even
higher bandwidth utilization in this setting? In other
words, how far from optimal was BitTorrent’s perfor-
mance?

• BitTorrent employs a Local Rarest First (LRF) policy
for choosing new blocks to download from peers. Does
this policy achieve its desired objective of avoiding the
last block problem?

• How effective is BitTorrent’s TFT policy in ensuring
that nodes cannot systematically download much more
data than they upload? That is, does the system allow
unfairness ?

• Previous studies have assumed that at least a fraction of
nodes perform altruistic uploading even after finishing
their downloads. However, if nodes depart as soon as
they finish (as they might with selfish clients), is the
stability or scalability of the system hurt significantly?

The answers depend on a number of parameters that Bit-
Torrent uses. It would be difficult, if not impossible, to in-
corporate and control such a large space of possibilities in
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an analytical or live measurement setting. Hence, in this pa-
per, we attempt to answer these questions using a simulator
which models the data-plane of BitTorrent.1 We believe our
study is complementary to previous BitTorrent studies. De-
tails of the simulator and experimental settings are described
in Sections 4 and 5. Our principal findings are:

1. BitTorrent is remarkably robust and scalable at ensur-
ing high uplink bandwidth utilization. It scales well as
the number of nodes increases, keeping the load on the
origin server bounded.

2. The bandwidth of the origin server is a precious re-
source especially when it is limited. It is important that
server deliver unique packets to the network at least as
quickly as they can be diffused among the peers.

3. The Local Rarest First (LRF) policy performs better
than alternative block-choosing policies in a wide range
of environments (e.g., flash crowd, post-flash crowd
situations, small network sizes, etc.) By successfully
getting rid of the last block problem, it promises to be
a simpler alternative to using source coding strategies
(to increase the diversity of blocks in the system).

4. BitTorrent’s rate based TFT mechanisms does not pre-
vent systematic unfairness in terms of the data served
by nodes, especially in node populations with hetero-
geneous bandwidths. We demonstrate that clustering
of similar nodes using bandwidth matching is key to
ensuring fairness without sacrificing uplink bandwidth
utilization.

5. BitTorrent is good at ensuring that new peers, who ini-
tially have no packets to offer, rapidly become produc-
tive members of the network. However, it not so good,
during a flash crowd, at allowing peers who have most
of a file to rapidly find the few remaining blocks.

We wish to emphasize that one of the contributions of this
paper is in illuminating and remedying unfairness, a system-
atic and previously unaddressed problem in BitTorrent. Note
that free-riding and unfairness in P2P networks reduce their
effectiveness quite significantly. We believe the changes we
suggest to remedy unfairness in BitTorrent increase its use-
fulness.

The rest of the paper is organized as follows: in Section 2,
we present a brief overview of the BitTorrent system. Sec-
tion 3 discusses related analytical and measurement-based
studies. Section 4 describes our simulation environment and
the evaluation metrics. Section 5 presents simulation results
under a variety of workloads. Finally, Section 6 concludes.

2. BITTORRENT OVERVIEW
BitTorrent [3] is a P2P application whose goal is to en-

able fast and efficient distribution of large files by leveraging
1We do not consider control-plane issues such as the performance of the
centralized tracker used for locating peers.

the upload bandwidth of the downloading peers. The basic
idea is to divide the file into equal-sized blocks (typically 32-
256 KB) and have nodes download the blocks from multiple
peers concurrently. The blocks are further subdivided into
sub-blocks to enable pipelining of requests so as to mask the
request-response latency [4].

Corresponding to each large file available for download
(called a torrent), there is a central component called the
tracker that keeps track of the nodes currently in the system.
The tracker receives updates from nodes periodically (every
30 minutes) as well as when nodes join or leave the torrent.

Nodes in the system are either seeds, i.e., nodes that have a
complete copy of the file and are willing to serve it to others,
or leechers, i.e., nodes that are still downloading the file but
are willing to serve the blocks that they already have to oth-
ers. When a new node joins a torrent, it contacts the tracker
to obtain a list containing a random subset of the nodes cur-
rently in the system (both seeds and leechers). The new node
then attempts to establish connections to about 40 existing
nodes, which then become its neighbors. If the number of
neighbors of a node ever dips below 20, say due to the de-
parture of peers, the node contacts the tracker again to obtain
a list of additional peers it could connect to.

Each node looks for opportunities to download blocks from
and upload blocks to its neighbors. In general, a node has a
choice of several blocks that it could download. It employs
a local rarest first (LRF) policy in picking which block to
download: it tries to download a block that is least replicated
among its neighbors. The goal is to maximize the diversity
of content in the system, i.e., make the number of replicas of
each block as equal as possible. This makes it unlikely that
the system will get bogged down because of “rare” blocks
that are difficult to find.

An exception to the local rarest first policy is made in the
case of a new node that has not downloaded any blocks yet.
It is important for such a node to quickly bootstrap itself,
so it uses the first available opportunity (i.e., an optimistic
unchoke, as discussed below) to download a random block.
From that point on, it switches to the local rarest first policy.

A tit-for-tat (TFT) policy is employed to guard against
free-riding: a node preferentially uploads to neighbors that
provide it the best download rates. Thus it is in each node’s
interest to upload at a good rate to its neighbors. For this rea-
son, and to avoid having lots of competing TCP connections
on its uplink, each node limits the number of concurrent up-
loads to a small number, typically 5. Seeds have nothing to
download, but they follow a similar policy: they upload to
up to 5 nodes that have the highest download rate.

The mechanism used to limit the number of concurrent
uploads is called choking, which is the temporary refusal
of a node to upload to a neighbor. Only the connections to
the chosen neighbors (up to 5) are unchoked at any point in
time. A node reevaluates the download rate that it is receiv-
ing from its neighbors every 10 seconds to decide whether a
currently unchoked neighbor should be choked and replaced
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with a different neighbor. Note that in general the set of
neighbors that a node is uploading to (i.e., its unchoke set)
may not exactly coincide with the set of neighbors it is down-
loading from.

BitTorrent also incorporates an optimistic unchoke pol-
icy, wherein a node, in addition to the normal unchokes de-
scribed above, unchokes a randomly chosen neighbor re-
gardless of the download rate achieved from that neighbor.
Optimistic unchokes are typically performed every 30 sec-
onds, and serve two purposes. First, they allow a node to
discover neighbors that might offer higher download rates
than the peers it is currently downloading from. Second,
they give new nodes, that have nothing to offer, the opportu-
nity to download their first block. A strict TFT policy would
make it impossible for new nodes to get bootstrapped. An
overview of related studies of BitTorrent [11, 9, 12] is given
in Section 3.

3. RELATED WORK
There have been analytical as well as measurement-based

studies of the BitTorrent system. At the analytical end, Qiu
and Srikant [12] have considered a simple fluid model of Bit-
Torrent and obtained expressions for the average number of
seeds and downloaders in the system as well as the average
download time as functions of the node arrival and departure
rates and node bandwidth. Their main findings are that the
system scales very well (i.e., the average download time is
not dependent on the node arrival rate) and that file sharing
is very effective (i.e, there is a high likelihood that a node
holds a block that is useful to its peers).

A measurement-based study of BitTorrent is presented in
[9]. The study is based on data from the “tracker” log for
a popular torrent (corresponding to the Linux Redhat 9 dis-
tribution) as well data gathered using an instrumented client
that participated in the torrent. The main findings are that
(a) peers that have completed their download tend to remain
connected (as seeds) for an additional 6.5 hours (although
the authors note that this could simply be because the Bit-
Torrent client needs explicit user action to be terminated and
disconnected from the network after a download completes),
(b) the average download rate is consistently high (over 500
kbps), (c) as soon as a node has obtained a few chunks, it is
able to start uploading to its peers (i.e., the local rarest first
policy works), and (d) the node download and upload rates
are positively correlated (i.e., the tit-for-tat policy works).

Another study based on a 8-month long trace of BitTor-
rent activity is presented in [11]. Some of the findings in
this study are different from those reported in [9], perhaps
because of the broader range of activities recorded in the
trace (statistics are reported for over 60,000 files). The av-
erage download bandwidth is only 240 Kbps and only 17%
of the peers stay on for one hour or more after they have
finished downloading. In general, there are a few highly re-
liable seeds for each torrent, and these are far more critical
for file availability than the much larger number of short-

lived seeds. The workload used for our simulations is based
on this finding — we typically have one or a small number
of long-lived seeds and assume that the other nodes depart
as soon as they have finished downloading.

Gkantsidis and Rodriguez [8] present a simulation-based
study of a BitTorrent-like system. They show results indicat-
ing that the download time of a BitTorrent-like system is not
optimal, especially in settings where there is heterogeneity
in node bandwidth. They go on to propose a network cod-
ing [1] based scheme called Avalanche that alleviates these
problems.

Our study differs from previous research in the following
important ways: first, while the analytical study reported in
[12] presents the steady state scalability properties of BitTor-
rent, it ignores a number of important BitTorrent parameters
(e.g., node degree (d), maximum concurrent uploads (u)),
and environmental conditions (e.g., seed bandwidth, etc.)
which affect uplink bandwidth utilization. Secondly, pre-
vious studies only briefly allude to free-riding; in this paper,
we quantify systematic unfairness resulting due to optimistic
unchoke and present mechanisms to alleviate it.

4. METHODOLOGY
To explore aspects of BitTorrent that are difficult to study

using data traces [9, 11] or analysis [12] we adopted a simulation-
based approach for understanding and deconstructing Bit-
Torrent performance. Our choice is motivated by the ob-
servation that BitTorrent is composed of several interesting
mechanisms that interact in many complex ways depending
on the workload offered. Using a simulator provides the flex-
ibility of carefully controlling the input parameters of these
mechanisms or even selectively turning off certain mecha-
nisms and replacing them with alternatives. This allows us to
explore system performance in scenarios not covered by the
available measurement studies [9, 11], and variations on the
original BitTorrent mechanism. In this section, we present
the details of our simulator and define the metrics we focus
on in our evaluation.

4.1 Simulator Details
Our discrete-event simulator models peer activity (joins,

leaves, block exchanges) as well as many of the associated
BitTorrent mechanisms (local rarest first, tit-for-tat, etc.) in
detail. The network model associates a downlink and an up-
link bandwidth for each node, which allows modeling asym-
metric access networks. The simulator uses these bandwidth
settings to appropriately delay the blocks exchanged by nodes.
The delay calculation takes into account the number of flows
that are sharing the uplink or downlink at either end, which
may vary with time. Doing this computation for each block
transmission is expensive enough that we have to limit the
maximum scale of our experiments to 8000 nodes on a P4
2.7GHz, 1GB RAM machine. Where appropriate, we point
out how this limits our ability to extrapolate our findings.

Given the computational complexity of even the simple
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model above, we decided to simplify our network model in
the following ways. First, we do not model network propa-
gation delay, which is relevant only for the small-sized con-
trol packets (e.g., the packets used by nodes to request blocks
from their neighbors). We believe that this simplification
does not have a significant impact on our results because
(a) the download time is dominated by the data traffic (i.e.,
block transfers), and (b) BitTorrent’s pipelining mechanism
(Section 2) masks much of the control traffic latency in prac-
tice. Second, we do not model the dynamics of TCP connec-
tions. Instead, we use a fluid model of connections, which
assumes that the flows traversing a link share the link band-
width equally. Although this simplification means that TCP
“anomalies” (e.g., certain connections making faster progress
than others) are not modeled, the length of the connections
makes at least short-term anomalies less significant. Finally,
we do not model shared bottleneck links in the interior of
the network. We assume that the bottleneck link is either
the uplink of the sending node or the downlink of the re-
ceiving node. While Akella et al. [2] characterize bandwidth
bottlenecks in the interior of the network, their study specifi-
cally ignores edge-bottlenecks by conducting measurements
only from well-connected sites (e.g., academic sites). The
interior-bottlenecks they find are generally fast enough (≥ 5
Mbps) that the edge-bottleneck is likely to dominate in most
realistic settings. Hence we believe that our focus on just
edge-bottlenecks is reasonable.

Finally, we make one simplification in modeling BitTor-
rent itself, by ignoring the endgame mode[4]. This is used
by BitTorrent to make the end of a download faster by allow-
ing a node to request the sub-blocks it is looking for in par-
allel from multiple peers. However, neglecting the endgame
mode does not qualitatively impact any of the results pre-
sented here, since our evaluation focuses primarily on the
steady-state performance. Also, this simplification has little
or no impact on metrics such as fairness and diversity.

For some of our experiments we also augment the core
BitTorrent mechanisms with some new features including
block-level TFT policies, bandwidth estimation, etc. Sec-
tion 5 provides the details at the relevant places.

4.2 Metrics
We quantify the effectiveness of BitTorrent in terms of the

following metrics: (a) link utilization, (b) mean download
time, (c) content diversity, (d) load on the seed(s), and (e)
fairness in terms of the volume of content served. The rest of
the section presents a brief discussion of the above metrics.

Link utilization: We use the mean utilization of the peers’
uplinks and downlinks over time as the main metric for eval-
uating BitTorrent’s efficacy.2 The utilization at any point in
time is computed as the ratio of the aggregate traffic flow
on all uplinks/downlinks to the aggregate capacity of all up-
links/downlinks in the system; i.e., the ratio of the actual

2In our discussion, we use the terms upload/download utilization synony-
mously with uplink/downlink utilization.

flow to the maximum possible.
Given the ad-hoc construction of the BitTorrent network

and its decentralized operation, it is unclear at the outset how
well the system can utilize the “perpendicular” bandwidth
between peers. For instance, since download decisions are
made independently by each node, it is possible that a set of
nodes decide to download a similar set of blocks, reducing
the opportunities for exchanging blocks with each other.

Notice that if all the uplinks in the system are saturated,
the system as a whole is serving data at the maximum possi-
ble rate. While downlink utilization is also an important met-
ric to consider, the asymmetry in most Internet access links
makes the uplink the key determinant of performance. Fur-
thermore, by design, duplicate file blocks (i.e., blocks that a
leecher already has) are never downloaded again. Hence, the
mean download time for a leecher is inversely related to the
average uplink utilization. Because of this and the fact that
observed uplink utilization is easier to compare against the
optimal value (100%), we do not explicitly present numbers
for mean download time for most of our experiments.

Fairness: The system should be fair in terms of the num-
ber of blocks served by the individual nodes. No node should
be compelled to upload much more than it has downloaded.
Nodes that willingly serve the system as a seed are, of course,
welcome, but involuntary asymmetries should not be sys-
tematic, and free-riding should not be possible. Fairness is
important for there to be an incentive for nodes to participate,
especially in settings where ISPs charge based on uplink us-
age or uplink bandwidth is scarce.

As described in Section 2, BitTorrent incorporates a tit-
for-tat (TFT) mechanism to block free-riders, i.e., nodes that
receive data without serving anything in return. However,
it is important to note that this is only a rate-based TFT
algorithm. For example, a node with a T1 uplink can still
open upload connections to a group of modems, if it knows
of no alternative peers. In such a case, it will end up serv-
ing many more blocks than it receives in return. Also, with
the optimistic unchoke mechanism, a node willingly delivers
content to a peer for 30 seconds even if it does not receive
any data from the peer. These factors can potentially result
in unfairness in the system. Our objective is to quantify the
amount of unfairness and also to propose mechanisms de-
signed to prevent such unfairness with minimal sacrifice in
performance (in terms of link utilization or download time).

Optimality: Throughout this paper we will refer to a sys-
tem as having optimal utilization if it achieves the maxi-
mum possible link utilization, and having complete fairness
if every leecher downloads as many blocks as it uploads. We
will refer to the system as being overall optimal if it has op-
timal utilization as well as complete fairness. Note that a
heterogeneous setting can have differing degrees of fairness
at the same level of bandwidth utilization. Consider an ex-
ample where 50 % of the leechers have download/upload ca-
pacity of 100/50 kbps (Type I) and 50 % have 50/25 (Type
II) and the file has B blocks. Now consider three simple
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scenarios:

• Type I leechers only serve other Type I leechers, and
Type II leechers only serve Type II.

• Type I leechers only serve Type II leechers, and Type
II leechers only serve Type I.

• Each Type I leecher serves half Type I and half Type II
leechers. Similarly for Type II leechers.

In all three of these cases, it is possible for the utilization
to be optimal. In Scenario 1 both Type I and Type II leech-
ers upload and download B blocks. In Scenario 2 a Type II
leecher uploads only B/2 blocks before it has downloaded
B and is finished; while the Type I leechers will have down-
loaded B/2 and uploaded B by the time their peers discon-
nect (which seems unfair). In Scenario 3 a Type I leecher
uploads 3B/2 and downloads B while a Type II leecher up-
loads B/2 and downloads B. While all of the scenarios keep
bandwidth utilization at its maximum, we consider only sce-
nario 1 to be optimal.

Content diversity: As noted above, the system’s effective-
ness in utilizing perpendicular bandwidth depends on the di-
versity of blocks held by the leechers in the system. So we
would like to measure the effectiveness of BitTorrent’s local
rarest first (LRF) mechanism (Section 2) in achieving diver-
sity. We quantify diversity using the distribution of the num-
ber of replicas of each block in the system. Ideally, the dis-
tribution should be relatively flat, i.e., the number of replicas
of each block should approximately be the same.

Load on the seed(s): This is defined as the number of
blocks served by the seed(s) in the system. In our presen-
tation here, we normalize this metric by dividing it by the
number of blocks in the file. So, for example, a normal-
ized load of 1.5 means that the seed serves a volume of data
equivalent to 1.5 copies of the file.

In the specific scenario where nodes depart as soon as they
finish their download, this metric is equivalent to the load on
the origin server, which is the sole seed in the system. For
the system to be scalable, the load per seed should remain
constant (or increase only slightly) as the number of leechers
in the system increases.

5. EXPERIMENTS

5.1 Workload Derived from a Real Torrent
In order to set the stage for the experiments to follow, we

first examine how our simulator performs under a realistic
workload. A workload consists of two elements that specify
the torrent: (a) node arrival pattern, and (b) uplink and down-
link bandwidth distribution of the nodes. To derive realistic
arrival patterns, we use the tracker log for the Redhat 9 dis-
tribution torrent [9]; thus we have the arrival times of clients
in an actual torrent. Unfortunately, the tracker logs have
no information about the bandwidths of the arriving clients.

So as an approximation, we use the actual client bandwidth
distribution reported for Gnutella clients [13]. While dis-
cretizing the CDFs presented in [13], we excluded the tail of
the distribution. This means that dial-up modems are elim-
inated, since it is unlikely that they will participate in such
large downloads, and very high bandwidth nodes are elimi-
nated, making the setting more bandwidth constrained. Ta-
ble 1 summarizes the distribution of peer bandwidths. We
set the seed bandwidth to 6000 kbps.

Downlink Uplink Fraction
(kbps) (kbps)
784 128 0.2
1500 384 0.4
3000 1000 0.25
10000 5000 0.15

Table 1: Bandwidth distribution of nodes derived from the actual dis-
tribution of Gnutella nodes [13].

In order to make the simulations tractable, we made two
changes. First, we used a file size of 200 MB (with a block
size 256 KB), which is much smaller than the actual size of
the Redhat torrent (1.7 GB). This means the download time
for a node is smaller and the number of nodes in the system
at any single point is also correspondingly smaller. Second,
we present results only for the second day of the flash crowd.
This day witnesses over 10000 node arrivals; however, due
to the smaller file download time, the maximum number of
active nodes in the system at any time during our simulations
was about 300.

The results of the simulation are summarized in Table 2.
As can be seen the uplink utilization at 91% is excellent,
meaning that the overall upload capability of the network
is almost fully utilized. However, this comes at the cost of
considerable skew in load across the system. Observe that
the seed serves approximately 127 copies of the file into the
network. Worse, some clients uploaded 6.26 times as many
blocks as they downloaded, which represents significant un-
fairness.

Metric Vanilla BitTorrent
Uplink utilization 91%

Normalized seed load 127.05
Normalized max. #blocks served 6.26

Table 2: Performance of BitTorrent with arrival pattern from Redhat
9 tracker log, and node bandwidths from Gnutella study.

The findings reported in Table 2 raise a number of inter-
esting connections, including:

1. How robust is the high uplink utilization to variations
in system configuration and workload? The various
aspects of system configuration include the number of
seeds and leechers, their arrival and departure patterns
(e.g., leechers leaving immediately after completing
their download or a seed departing prematurely), band-
width distribution, etc.?
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2. Can the fairness of the system be improved without
hurting link utilization?

3. How well does the system perform when there is het-
erogeneity in terms of the the extent to which leechers
have completed their download (e.g., new nodes coex-
isting with nodes that have already completed most of
their download)?

4. How sensitive is system performance to parameters such
as the node degree (i.e., the number of neighbors main-
tained by leechers) and the maximum number of con-
current uploads?

To answer these questions, we present a detailed simulation-
based study of BitTorrent in the sections that follow. The key
advantage of a simulation-based study is that it can provide
insight into system behavior as the configuration and work-
load parameters are varied in a controlled manner.

5.2 Road-map of Experiments
We use the following default settings in our experiments,

although we do vary these settings in specific experiments,
as noted in later sections:

• File size: 102400 KB = 100 MB (400 blocks of 265
KB each)

• Number of initial seeds: 1 (the origin server, which
stays on throughout the duration of the experiment)

• Seed uplink bandwidth: 6000 Kbps

• Number of leechers that join the system (n): 1000

• Leecher downlink/uplink bandwidth: 1500/400 Kbps

• Join/leave process: a flash crowd where all nodes join
within a 10-second interval. Leechers depart as soon
as they finish downloading.

• Node degree (d): 7. Node degree defines the size of the
neighborhood used to search for the local rarest block.

• Limit on the number of concurrent upload transfers
(u): 5 (includes the connection that is optimistically
unchoked)

As a very gross simplification the parameters that affect
the evolution of a torrent are: (1) the seed(s) and its serv-
ing capacity, (2) the number of leechers that wish to down-
load, (3) the policies that nodes use to swap blocks among
themselves, (4) the distribution of node upload/download ca-
pacities and (5) the density of the arrivals of the nodes(e.g.,
leecher arrival pattern such as flash crowd). To tackle the ef-
fects sequentially we start in Section 5.3 by examining only
(1), (2) and (3). That is, we consider a homogeneous setting
where all leechers have the same downlink/uplink bandwidth
(1500/400 Kbps by default, as noted above) and only a flash
crowd is considered. We explore the impact of the number of

leechers, the number of initial seeds, aggregate bandwidth of
seeds, bandwidth of leechers, and the number of concurrent
upload transfers (u). We also evaluate BitTorrent’s LRF pol-
icy for picking blocks for different settings of node degree
(d), and compare it with simpler alternatives such as random
block picking.

Then in Section 5.4 we examine (4) and turn to a hetero-
geneous flash-crowd setting where there is a wide range in
leecher bandwidth. We consider 3 kinds of connectivity for
leechers: high-end cable (6000/3000 Kbps), high-end DSL
(1500/400 Kbps), and low-end DSL (784/128 Kbps). Our
evaluation shows that BitTorrent can display systematic un-
fairness to the detrimant of high bandwidth peers; and we
suggest a number of approaches to remedy the problem.

Finally, in Section 5.5, we turn to (5) and consider work-
loads other than a pure flash-crowd scenario. In particular
we consider cases where leechers with very different “ob-
jectives” coexist in the system. For instance, new nodes in
the post-flash crowd phase will be competing with nodes that
have already downloaded most of the blocks. Likewise, an
old node that reconnects during the start of a new flash crowd
to finish the remaining portion of its download would be
competing with new nodes that are just starting their down-
loads. We wish to determine how well BitTorrent’s mecha-
nisms work in such settings.

5.3 Homogeneous Environment
In this section, we study the performance of BitTorrent in

a setting consisting of a homogeneous (with respect to band-
width) collection of leechers. Unless specified otherwise,
we use the default settings noted in Section 5.2 for file size
(102400 KB), seed bandwidth (6000 Kbps), leecher band-
width (1500/400 Kbps), and join/leave process (1000 leech-
ers join during the first 10 seconds and leave as soon as they
finish downloading).

5.3.1 Number of nodes

First we examine the performance of the system with in-
creasing network size. We vary the number of nodes (i.e.,
leechers) that join the system from 50 to 5000. All nodes
join during a 10 second period, and remain in the system un-
til they have completed the download. The goal is to under-
stand how performance varies with scale. Figure 1 plots the
mean utilization of the aggregate upload and download ca-
pacity of the system (i.e., averaged across all nodes and all
time). We find that the upload capacity utilization is close
to 100% regardless of system size. (Utilization is a little
short of 100% because of the start-up phase when nodes are
unable to utilize their uplinks effectively.) The high uplink
utilization indicates that the system is performing almost op-
timally in terms of mean download time. The downlink uti-
lization, on the other hand, is considerably lower. Clearly
the total download rate cannot exceed the total upload rate
plus the seed’s rate. Thus the download utilization will gen-
erally be limited by the upload capacity (when leechers have
greater download than upload capacity). An exception is
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when the number of leechers is so small that they can di-
rectly receive significant bandwidth from the seed; this can
be seen in Figure 1 by the slight rise in download utilization
when the network size is under fifty nodes.
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Figure 1: Mean upload and download utilization of the system as the
flash-crowd size increases. Observe that the mean upload utilization is
almost 100%, even as the network size increases. The download utiliza-
tion is upper bounded by the ratio of the leechers upload to download
bandwidths.

Another important measure of scalability is how the work
done by the seed varies with the number of leechers. We
measure this in terms of the normalized number of blocks
served, i.e., the number of blocks served divided by the num-
ber of blocks in one full copy of the file. Ideally, we would
like the work done by the seed to remain constant or increase
very slowly with system size. Figure 2 shows that this is ac-
tually the case. The normalized number of blocks served by
the seed rises sharply initially (as seen from the extreme left
of Figure 2) but then flattens out. The initial rise indicates
that the seed is called upon to do much of the serving when
the system size is very small, but once the system has a crit-
ical mass of 50 or so nodes, peer-to-peer serving becomes
very effective and the seed has to do little additional work
even as the system size grows to 8000.
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Figure 2: Contribution of the seed as the flash-crowd size increases.
Observe that the amount of work done by the seed is almost indepen-
dent of the network size, indicating that (at least in this scenario) the
system scales very well.

In summary, BitTorrent performance scales very well with
increasing system size both in terms of bandwidth utilization
and the work done by the seed.

5.3.2 Number of seeds and bandwidths of seeds

Next we consider the impact of numbers of seeds and ag-
gregate seed bandwidth on the performance of BitTorrent.
We first consider the case where there is a single seed, and
then move on to the case of multiple seeds. We fix the num-
ber of leechers that join the system to 1000.

Figure 3 shows the mean upload utilization (which in turn
determines the mean file download time) as the bandwidth of
a single seed varies from 200 Kbps to 1000 Kbps. The “nos-
martseed” curve corresponds to default BitTorrent behavior.
We see that upload utilization is very low (under 40%) when
the seed bandwidth is only 200 Kbps. This is not surpris-
ing since the low seed bandwidth is not sufficient to keep the
uplink bandwidth of the leechers (400 Kbps) fully utilized,
at least during the start-up phase. However, even when the
seed bandwidth is increased to 400 or 600 Kbps, the upload
utilization is still considerably below optimal.
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Figure 3: Upload utilization as the bandwidth of the seed is varied. By
avoiding duplicate block transmissions from the seed, the “smartseed”
policy improves utilization significantly.

Part of the reason for poor upload utilization is that seed
bandwidth is wasted serving duplicate blocks prematurely,
i.e., even before one full copy of the file has been served.
To see that this is so, examine the “nosmartseed” curve in
Figure 4. This plots the total number of blocks served by
the seed by the time one full copy of the file is served, as a
function of seed bandwidth. Whenever this total number of
blocks served is higher than the unique number of blocks in
the file (400), it indicates that duplicate blocks were served
prematurely. We believe this to be a problem since it de-
creases the block diversity in the network. That is, despite
the Local Rarest First (LRF) policy, multiple leechers con-
nected to the seed can operate in an uncoordinated manner
and independently request the same block.

Once identified there is a simple fix for this problem. We
have implemented a smartseed policy, which has two com-
ponents: (a) The seed does not choke a leecher to which it
has transferred an incomplete block. This maximizes the op-
portunity for leechers to download and hence serve complete
blocks. (b) For connections to the seed, the LRF policy is re-
placed with the following: among the blocks that a leecher
is looking for, the seed serves the one that it has served the
least. This policy improves the diversity of blocks in the
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Figure 4: Variation of the total #blocks served by the seed before it has
served at least one copy of each block in the file.

system, and also eliminates premature duplicate blocks, as
shown in Figure 4. This results in noticeable improvement
in upload utilization, especially when seed bandwidth is lim-
ited and precious (Figure 3).
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Figure 5: Upload utilization for a single seed versus multiple indepen-
dent seeds. The lack of coordination among the independent seeds re-
sults in duplicate blocks being served by different seeds and a corre-
sponding penalty in uplink utilization.

Finally, Figure 5 compares the cases of having a single
seed and having multiple independent seeds, each with 200
Kbps bandwidth, such that the aggregate seed bandwidth is
the same in both cases. All seeds employ the smartseed pol-
icy. The upload utilization suffers in the case of multiple
seeds because the independent operation of the seeds results
in duplicate blocks being served by different seeds, despite
the smartseed policy employed by each seed.

In summary, we find that seed bandwidth is a precious re-
source and it is important not to waste it on duplicate blocks
until all blocks have been served at least once. The “smart-
seed” policy, which modifies LRF and the choking policy for
the seeds’ connections, results in a noticeable improvement
in system performance.

5.3.3 Block choosing policy and Node degree

Next we address the question of the block choosing policy.
As mentioned earlier the LRF policy appears to be one of the
key ingredients in BitTorrent. Here, we investigate how im-
portant it is, and show when it matters and when it does not.
We will assume that the seed employs the smartseed strategy

introduced in the last section and comment only qualitatively
on the results otherwise.

Before describing our experiments let us quickly revisit
the intuition behind the LRF policy. Since any rare block
will automatically be requested by many leechers, it is un-
likely to remain rare for long. For example, if a rare block
is possessed by only one leecher, it will be among the first
blocks requested by any nodes unchoked by that leecher.
This, of course, decreases its rareness until it is as com-
mon in the network as any other block. This should re-
duce the coupon collector or “last block problem” that has
plagued many file distribution systems [6]. These arguments
are qualitative. The goal of this section is to measure how
well LRF actually performs.

We investigate 3 issues. First, we compare LRF with an
alternative block choosing policy in which each leecher asks
for a block picked at random from the set that it does not yet
possess but that is held by its neighbors. Second, we exam-
ine how the effectiveness of LRF varies as the seed band-
width is varied. Since a high-bandwidth seed delivers more
blocks to the network, the risk of blocks becoming rare is
lower. Third, we examine the impact of varying the node
degree, d, which defines the size of the neighborhood used
for searching in the LRF and random policies.

Figure 6 summarizes the results with regard to the follow-
ing issues: (a) random vs.LRF, (b) low seed bandwidth (400
Kbps) vs.high seed bandwidth (6000 Kbps), and (c) node de-
gree, d = 4, 7, and 15. In all cases, the leechers had down/up
bandwidths of 1500/400 Kbps. Observe that the low band-
width seed has only as much upload capacity as one of the
leechers.

The general trend is that uplink utilization improves with
increases in both seed bandwidth and node degree. When
node degree is low (d = 4), leechers have a very restricted
local view. So LRF is not effective in evening out the distrib-
ution of blocks at a global level, and performs no better than
the random policy. However, when node degree is larger
(d = 7 or 15) and seed bandwidth is low, LRF outperforms
the random policy by ensuring greater diversity in the set of
blocks held in the system. Finally, when the seed bandwidth
is high, the seed’s ability to inject diverse blocks into the
system improves utilization and also eliminates the perfor-
mance gap between LRF and the random policy. Thus, LRF
makes a difference only when node degree is large enough
to make the local neighborhood representative of the global
state and seed bandwidth is low.

In Figure 7 we graph the average number of interesting
connections available to each leecher in the network for the
case of d = 7. The connection between a node and its peer
is called interesting if the node can send useful data to its
peer. As stated in the caption, each point here represents
the mean number of interesting connections (averaged over
all the nodes in the system) at a particular point in time.
Observe that in the high seed bandwidth case there is little
difference between the LRF and the random block choos-
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Figure 6: Upload utilization for LRF and Random policies for different
values of the node degree, d. LRF performs better only when the node
degree is large and the seed bandwidth is low.

ing policies (the top 2 curves in Figure 7). In the low seed
bandwidth case the difference is very pronounced. Observe
that with the LRF policy, the number of interesting connec-
tions is significantly higher, especially towards the end of the
download. This underlines the importance of the LRF policy
in the case where seed bandwidth is low.
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Figure 7: Variation of the number of interesting connections over time
for d = 7 and various settings of seed bandwidth and block choosing
policy. Each point represents the mean across all nodes present in the
system at that time.

Next we plot in Figure 8 the inter-arrival time between
blocks in the case of a low-bandwidth seed. This is the
time between the receipt of consecutive distinct blocks, av-
eraged across all nodes. We plot this for both the LRF and
the random block choosing policies, with d = 7 in both
cases. Recall that the file size is 400 blocks, so the figure
only shows the inter-arrival time of the last few blocks. The
sharp upswing in the curve corresponding to the random pol-
icy clearly indicates the last-block problem. There is no such
upswing with LRF.

In summary, our results indicate that the LRF policy pro-
vides significant benefit when seed bandwidth is low and
node degree is large enough for the local neighborhood of
a node to be representative of the global state. Nevertheless,
we find that the node degree needed for LRF to be effec-
tive is quite modest relative to the total number of nodes in
the system. Specifically, in a configuration with 8000 nodes,
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Figure 8: Inter-arrival times for blocks at the tail end of the file. Each
point represents the mean time to receive the kth block, where the mean
is taken over all nodes. Random clearly shows the last-block problem.

we find that LRF is effective for d = 7, which corresponds
to each node having direct visibility to a neighborhood that
represents only 0.09% of the system. However, given the
scaling limitations of our simulator, we are not in a position
to extrapolate this result to larger system sizes.

5.3.4 Concurrent Uploads

In BitTorrent, each node uploads to no more than a fixed
number of nodes (u = 5, by default) at a time. This fixed
upload degree limit presents two potential problems. First,
having too many concurrent uploads delays the availability
of full blocks to the network. That is, if a leecher’s upload
capacity is divided between u nodes, there can be a consid-
erable delay before any of them has a complete block that
they can start serving to others. Second, low peer downlink
bandwidth can constrain uplink utilization. That is, a leecher
uploading to a peer can find its upload pipe underutilized if
the receiving node actually becomes the bottleneck on the
transfer (i.e., has insufficient available download bandwidth
to receive as rapidly as the sender can transmit).
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Figure 9: Utilization for different values of the maximum number of
concurrent uploads (u).

Figure 9 graphs the mean upload utilization as a function
of the maximum number of concurrent uploads permitted
(i.e., u) for low and high bandwidth seeds. We show the re-
sults both with and without the smartseed fix. (Since u can
be no more than d, we used d = 60 rather than 7 in this
experiment, to allow us to explore a wide range of settings
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for u.) As u increases (and the smartseed fix is not applied),
the probability that duplicate data is requested from the seed
increases, causing link utilization to drop. The drop in uti-
lization is very severe when seed bandwidth is low, since in
such cases, as we have seen before, good performance criti-
cally depends on the effective utilization of the seed’s uplink.
We see utilization dropping gradually even when the smart-
seed fix is applied. The reason is that a large u causes the
seed’s uplink to get fragmented, increasing the time it takes
for a node to fully download a block that it can then serve to
others.

To address both the problems of underutilization and frag-
mentation of the seed’s uplink, we propose the following fix:
instead of having a fixed upload degree, a node should un-
choke the minimum number of connections needed to fully
utilize the available bandwidth on its upload link. In prac-
tice, however, we may want to have somewhat more than
the minimum number of connections, to accommodate band-
width fluctuations (say due to competing traffic) on any one
flow. We plan to investigate this in future work.

5.4 Heterogeneous Environment
In this section, we study the behavior of BitTorrent when

node bandwidth is heterogeneous. As described in Section 4.2,
a key concern in such environments is fairness in terms of the
volume of data served by nodes. Recall, that in the Redhat
torrent given in table 2, some nodes uploaded 6.26 times as
many blocks as they downloaded; and we wish to avoid such
unfairness. This is especially important since uplink band-
width is generally a scarce resource. BitTorrent only im-
plements a rate-based TFT policy, which can still result in
unfairness in terms of the volume of data served. This sec-
tion quantifies the extent of the problem and presents mech-
anisms that enforce stricter fairness without hurting uplink
utilization significantly.

A node in BitTorrent unchokes those peers from whom it
is getting the best download rate. The goal of this policy is
to match up nodes with similar bandwidth capabilities. For
example, a high-bandwidth node would likely receive the
best download rate from other high-bandwidth nodes, and
so would likely be uploading to such high-bandwidth nodes
in return. To help nodes discover better peers, BitTorrent
also incorporates an optimistic unchoke mechanism. How-
ever, this mechanism significantly increases the chance that
a high bandwidth node unchokes and transfers data to nodes
with poorer connectivity. Not only can this lead to decrease
in uplink utilization (since the download capacity of the peer
can become the bottleneck), it can also result in the high
bandwidth node serving a larger volume of data than it re-
ceives in return. This also implies that the download times
of lower bandwidth nodes will improve at the cost of higher
bandwidth nodes.

We now consider two simple mechanisms that can poten-
tially reduce such unfairness: (a) Quick bandwidth estima-
tion (QBE), and (b) Pairwise block-level TFT. Note that en-
forcing fairness implies that the download time of a node

will be inversely related to its upload capacity (assuming
that its uplink is slower than its downlink).

5.4.1 Quick Bandwidth Estimation

In BitTorrent, optimistically unchoked peers are rotated
every 30 seconds. The assumption here is that 30 seconds is
a long enough duration to establish a reverse transfer and as-
certain the upload bandwidth of the peer in consideration.
Furthermore, BitTorrent estimates bandwidth only on the
transfer of blocks; since all of a node’s peers may not have
interesting data at a particular time, opportunity for discov-
ering good peers is lost.

Instead, if a node were able to quickly estimate the upload
bandwidth for all its d peers, optimistic unchokes would not
be needed. The node could simply unchoke the u peers out
of a total of d that offer the highest upload bandwidth.

In practice, a quick albeit approximate bandwidth estimate
could be obtained using lightweight schemes based on the
packet-pair principle [14] that incur much less overhead than
a full block transfer. Also, the history of past interactions
with a peer could be used to estimate its upload bandwidth.

In our experiments here, we neglect the overhead of QBE
and effectively simulate an idealized bandwidth estimation
scheme whose overhead is negligible relative to that of a
block transfer.

5.4.2 Pairwise Block-Level Tit-for-Tat

The basic idea here is to enforce fairness directly in terms
of blocks transferred rather than depending on rate-based
TFT to match peers based on their upload rates. Suppose
that node A has uploaded Uab blocks to node B and down-
loaded Dab blocks from B. With pairwise block-level TFT,
A allows a block to be uploaded to B if and only if Uab ≤
Dab + ∆, where ∆ represents the unfairness threshold on
this peer-to-peer connection. This ensures that the maximum
number of extra blocks served by a node (in excess of what
it has downloaded) is bounded by d∆, where d is the size
of its neighborhood. Note that with this policy in place, a
connection is (un)choked depending on whether the above
condition is satisfied or not. Also, there is no need for the
choker to be invoked periodically.

Thus, provided that ∆ is at least one (implying that new
nodes can start exchanges), this policy replaces the opti-
mistic unchoke mechanism and bounds the disparity in the
volume of content served. However, it is important to note
that there is a trade-off here. The block-level TFT policy
may place a tighter restriction on data exchanges between
nodes. It may so happen, for example, that a node refuses to
upload to any of its neighbors because the block-level TFT
constraint is not satisfied, reducing uplink utilization. We
quantify this trade-off in the evaluation presented next.

5.4.3 Results

We now present performance results for vanilla BitTorrent
as well as the new mechanisms described above with respect
to three metrics: (a) mean upload utilization (Figure 10), (b)

11



unfairness as measured by the maximum number of blocks
served by a node (Figure 11), and (c) mean download time
for nodes of various categories (Figure 14). All experiments
in this section use the following settings: a flash-crowd of
1000 nodes joins the torrent during the first 10 seconds. In
each experiment, there are an equal number of nodes with
high-end cable modem (6000 Kbps down; 3000 Kbps up),
high-end DSL (1500 Kbps down; 400 Kbps up), and low-
end DSL (784 Kbps down; 128 Kbps up) connectivity. We
vary the bandwidth of the seed from 800 Kbps to 6000 Kbps.
Seeds always utilize the smartseed fix.
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Figure 10: Mean upload utilization for (a) vanilla BitTorrent, (b) Bit-
Torrent with QBE, and (c) with the pairwise block-level TFT policy.

Figure 10 shows the mean upload utilization of BitTor-
rent and other policies in a heterogeneous setting, as a func-
tion of node degree. We find that utilization is sub-optimal
in many cases, and especially low with pairwise block-level
TFT, when the node degree is low (d = 7). The reason is that
when the node degree is low, high-bandwidth nodes some-
times have only low-bandwidth peers as neighbors. This
restricts the choice of nodes that the high-bandwidth node
can serve to such low-bandwidth nodes, despite the QBE
heuristic. A bandwidth bottleneck at the downlink of the
low-bandwidth peer would reduce the uplink utilization at
the high-bandwidth node. This degradation is particularly
severe with pairwise block-level TFT, since in this case the
high-bandwidth node is constrained to upload at a rate no
greater than the uplink speed of its low-bandwidth peers. In
all cases, uplink utilization improves as the node degree be-
comes larger, since the chances of a high-bandwidth node
being stuck with all low-bandwidth peers decreases.

The interaction between high-bandwidth nodes and their
low-bandwidth peers also manifests itself in terms of a dis-
parity in the volume of data served by nodes. Figure 11 plots
the maximum number of blocks served by a node normal-
ized by the number of blocks in the file. The seed node is
not included while computing this metric. We would like to
point out that Jain’s fairness index [10], computed over the
number of blocks served by each node, is consistently close
to 1 for all schemes implying the schemes are fair “on the
whole”.

However, as Figure 11 shows, some nodes can still be very
unlucky, serving more than 7 times as many blocks as they
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Figure 11: Maximum number of blocks (normalized by file size) served
by any node during an experiment for (a) vanilla BitTorrent, (b) Bit-
Torrent with QBE, and (c) with the pairwise block-level TFT policy.

receive in certain situations. All of these unlucky nodes are
in fact high-bandwidth nodes. The pairwise block-level TFT
policy eliminates this unfairness by design. Figure 11 bears
this out. Also, the QBE heuristic reduces unfairness signifi-
cantly when the node degree is large enough that block trans-
fers between bandwidth-mismatched nodes can be avoided.

Bandwidth-matching tracker policy

To alleviate the problems resulting from block transfers be-
tween bandwidth-mismatched nodes, we investigate a new
bandwidth-matching tracker policy. The idea here is for the
tracker to return to a new node a set of candidate neighbors
with similar bandwidth to it. This can be accomplished quite
easily in practice by having nodes report their bandwidth to
the tracker at the time they join. (We ignore the possibil-
ity of nodes gaming the system by lying about their band-
width.) Having bandwidth-matched neighbors would avoid
the problems arising from bandwidth-mismatched pairings.
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Figure 12: Mean upload utilization with the bandwidth-matching
tracker policy in use for (a) vanilla BitTorrent (but for the new
bandwidth-matching tracker policy), (b) BitTorrent with QBE, and (c)
with the pairwise block-level TFT policy. Compare with Figure 10.

Care is needed in designing this policy. Having the tracker
strictly return only a list of bandwidth-matched peers runs
the risk of significantly diminishing the resilience of the peer-
to-peer graph, by having only tenuous links between “clouds”
of bandwidth-matched nodes. In fact, we have found several
instances in our experiments where groups of clients were
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Figure 13: Maximum number of blocks (normalized by file size) served
by any node with the bandwidth-matching tracker policy in use for (a)
vanilla BitTorrent (but for the new bandwidth-matching tracker pol-
icy), (b) BitTorrent with QBE, and (c) with the pairwise block-level
TFT policy. Compare with Figure 11.

disconnected from the rest of the network and the disconnec-
tion did not heal quickly because the tracker, when queried,
would often return a list of peers that are also in the discon-
nected component.

To avoid this problem, we employ a hybrid policy where
the tracker returns a list of peers, 50% of which are bandwidth-
matched with the requester and 50% are drawn at random.
The former would enable the querying node to find bandwidth-
matched neighbors whereas the latter would avoid the dis-
connection problem.

Figures 12 and 13 show the upload utilization and fairness
metrics, respectively, with the (hybrid) bandwidth-matched
tracker policy in place. We find a significant improvement in
both metrics across a range of values of node degree, as can
be seen by comparing Figures 12 and 10 and Figures 13 and
11.
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Figure 14: Download times for nodes of different categories for various
schemes.

Finally, Figure 14 presents another view of the perfor-
mance of these policies by plotting the mean download time
for each category of nodes. We present results for the set-
ting where seed bandwidth is 1500 kbps and d = 20. On
the whole, we find that even for vanilla BitTorrent, down-
load times for nodes decrease as the download and upload
capacities of the nodes increase. Thus, the system appears
to be fair.

However, a comparison with the QBE and block-level TFT
policies reveals that, with vanilla BitTorrent, nodes with low
uplink bandwidth can actually finish faster – this is because
they can get connected to high-bandwidth nodes. The QBE
and block-level TFT policies, on the other hand, attempt to
minimize such unfairness by connecting nodes of similar
bandwidths with each other. A consequence of desiring high
fairness is that download times of nodes become inversely
proportional to their uplink capacities. In a similar vein, we
expect that high-bandwidth nodes should have lower down-
load times since they no longer subsidize other nodes. How-
ever, this happens only for the QBE heuristic. In case of the
block-level TFT policy, reduced uplink utilization nullifies
this benefit and increases download times slightly.

In summary, we find that a bandwidth-unaware tracker
combined with the optimistic unchoke mechanism in Bit-
Torrent results in nodes with disparate bandwidths commu-
nicating with each other. This results in lower uplink uti-
lization and also creates unfairness in terms of volume of
data served by nodes. However, it is possible to obtain a
reasonable combination of high upload utilization and good
fairness with simple modifications to BitTorrent. Whereas
the pairwise block-level TFT policy achieves excellent fair-
ness and good upload utilization, the QBE heuristic achieves
excellent upload utilization and good fairness. The hybrid
bandwidth-matching tracker policy is critical to both.

5.5 Other Workload
In this section, we consider node arrival patterns other than

a pure flash crowd. We also consider the case where the seed
departs prematurely, i.e., before all nodes have completed
their download.

5.5.1 Divergent Download Goals

Thus far we have focused on the performance of BitTor-
rent in flash-crowd scenarios. While a flash-crowd setting is
important, it also has the property that each node is typically
in “sync” with its peers in terms of the degree of completion
of its download. For instance, all nodes join the flash crowd
at approximately the same time and with none of the blocks
already downloaded.

However, there are situations, such as the post-flash-crowd
phase, where there may be a greater diversity in the degree
of completion of the download across the peers. This in turn
would result in a divergence in the download goals of the
participating nodes — those that are starting out have a wide
choice of blocks that they could download whereas nodes
that are nearing the completion of their download are look-
ing for specific blocks.

Here we consider two extremes of the divergent goals sce-
nario. In the first case, a small number of new nodes join
when the bulk of the existing nodes are nearing th comple-
tion of their download. This might reflect a situation where
new nodes join in the post-flash-crowd phase. In the second
case, a small number of nodes that have already completed
the bulk of their download (at some point in the past) rejoin
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the system during a subsequent flash crowd to complete their
download. The majority of their peers in this case would be
nodes that have not downloaded much of the file.

Performance of Nodes in the Post-Flash Crowd Phase

A post flash-crowd scenario is different from a flash-crowd
in that there may be a wide range in the fraction of the down-
load completed by each node. Nodes that have been present
in the system longer are typically looking for a more spe-
cific set of blocks. Thus, it may be harder for a newcomer
to establish a TFT exchange with such older nodes, which
could lead to increased download times as well as greater
load on the seed. Our goal here is to investigate whether this
problem actually happens and how severe it is.

We start with a flash crowd of 1000 nodes joining in the
first 10 seconds of the experiment. Then, a batch of 10 nodes
is introduced into the system at 1800 seconds, when the
flash-crowd nodes have finished downloading approximately
80% of the file-blocks. All nodes have down/up bandwidths
of 1500/400 Kbps. We use two settings for seed bandwidth:
800 Kbps (low) and 6000 Kbps (high). The seed node uti-
lizes the smartseed fix.
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Figure 15: Number of interesting outgoing connections of a randomly
sampled post flash-crowd node for various configurations.

Figure 15 plots the number of interesting outgoing con-
nections over time for a randomly chosen newly joined node
until all the flash-crowd nodes leave. An outgoing connec-
tion is deemed interesting if the node in question has some
block that its peer needs. Note that the newcomer would
be interested in content from almost all its peers during the
first several seconds since it does not have any block to start
with. Thus, for every interesting connection, the newcomer
can establish a TFT exchange with its peer.

Figure 15 shows that a newcomer is quickly able to gather
blocks that are interesting to at least a few of its peers, as
seen from the non-zero count of interesting connections in
the figure. The reason that a newcomer is quickly able to
establish interesting connections to its peers is as follows: if
p is the probability that a downloaded block is interesting to
some neighbor, and if this probability is the same and inde-
pendent for each neighbor, then the probability that a down-
loaded block is useful to at least one neighbor is 1−(1−p)d.
This probability increases very quickly with d, even if p

is relatively small. Thus, while a large degree, d, may not
be necessary for a flash-crowd situation, making the degree
very small can negatively impact TFT performance for new
nodes in the post-flash-crowd phase.

Performance of Pre-seeded Nodes

We now consider the case where a small number of have al-
ready completed the bulk of their download (i.e., nodes that
have been “pre-seeded” with the bulk of the blocks) rejoin
the system during a subsequent flash crowd to complete their
download. The key question is whether and to what extent
such pre-seeded nodes are penalized because they are look-
ing for specific blocks whereas the majority of nodes in the
system are interested in most of the blocks (since they have
few blocks).

Again, we start with a flash-crowd of 1000 nodes joining
in the first 10 seconds. After that, a new node is introduced
every 200 seconds into the system. Each new node is seeded
with a random selection of k% blocks – this simulates a situ-
ation where the node completed k% of its download, discon-
nected, and then re-joined during a subsequent flash-crowd
to finish its download. Ideally, a node that is pre-seeded with
k% of the blocks should take approximately (1− k

100 )T time
to download the remaining blocks, where T is the mean time
to download the entire file. (T = 2000 seconds, for this set-
ting.) However, a pre-seeded node could take longer because
the specific blocks that it is looking for may be hard to find,
a penalty that we would like to quantify.
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Figure 16: Download time ratios for a pre-seeded node introduced into
the system at 200 seconds into the flash crowd. We show results both
for vanilla BitTorrent and BitTorrent with source-based FEC.

Figure 16 plots the ratio of actual download time to the
expected download time for such a “pre-seeded” node that
joined 200 seconds into the flash crowd, for different values
of k. A ratio close to 1.0 indicates that a pre-seeded node
does not have to wait substantially longer than ideal. We use
a seed bandwidth of 6000 Kbps in this experiment; thus, the
seed has injected at least one copy of each block into the
system at approximately 135 seconds.

From the bars labeled “BitTorrent” in Figure 16, we see
that as the number of blocks required by the pre-seeded node
decreases, the likelihood of the node taking longer than ideal
to finish increases.3 There are two reasons for this behavior:
3Note that this increase is in the ratio of the actual to ideal download times,
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first, each block takes a non-trivial amount of time to spread
from the seed to every node in the system. The maximum
possible fanout of this distribution tree is bounded by u = 5
(refer Section 5.2). Furthermore, the degree d of the pre-
seeded node determines how quickly it can “intercept” this
distribution tree. The second reason is that a pre-seeded node
is looking for specific blocks, and would like these blocks
to be replicated quickly. However, BitTorrent’s LRF policy
dictates that all blocks get replicated equally so that none re-
mains rare. This “resource-sharing” across blocks decreases
the distribution rate of the specific blocks desired by the pre-
seeded node, resulting in larger download times.

Notice that pre-seeded nodes are delayed basically because
they are looking for specific blocks. If the source were to
employ FEC and inject a large number of equivalent coded
blocks into the system, pre-seeded nodes would have more
choices for blocks to download and hence should be able
to reduce the download time penalty. We repeated the above
experiment with the source introducing 100% additional FEC
coded blocks. As shown in the bars labeled “BitTorrent+FEC”
in Figure 16, the download time ratio with FEC are sub-
stantially lower. The download time ratio is close to 1.0 for
k = 75% and 85%, and well under 2.0 even when k = 95%.

Summary

Our experiments with the divergent goals scenarios indicates
that BitTorrent tends to “equalize” the performance of newly
joined nodes that have fewer or more blocks than the average
node. The ones that have fewer blocks are “pulled up” since
the LRF mechanism is able to ensure that the new nodes
quickly become effective in TFT exchanges. The ones that
have a larger number of blocks get “pulled down” (even if
the penalty may not be much in terms of absolute time) be-
cause the LRF policy does not preferentially replicate the
specific blocks that such nodes are looking for. A simple ap-
plication of source-based FEC can significantly reduce the
severity of this problem.

5.5.2 Premature Seed Departure

We also experimented with flash-crowd scenarios where
the origin server leaves the system after serving exactly one
copy of each block. If blocks are dispersed quickly and
widely by BitTorrent, this should not matter and most nodes
in the flash-crowd should be able to finish. We observed this
behavior consistently except in heterogeneous environments
where seed bandwidth was low. In such cases, the higher
bandwidth nodes which are connected to the seed get their
last block from the seed and exit immediately without serv-
ing these blocks to any other node. If the seed bandwidth is
not constrained, all unique blocks are injected into the sys-
tem by the seed much earlier than any individual node fin-
ishes. This ensures that these very rare and crucial blocks
get replicated at least a few times.

Hence, we conjecture that if leechers stay on to serve a

not in the absolute difference between these times.

small number (1-2) of extra blocks in the system after fin-
ishing their downloads, all nodes can finish with high prob-
ability even when the origin server departs.

6. SUMMARY AND CONCLUSION
In this paper, we have described a series of experiments

aimed at analyzing and understanding the performance of
BitTorrent in a range of scenarios. We focused our attention
on two main metrics: utilization of the upload capacity of
nodes, and unfairness in terms of the volume of data served
by nodes.

Our findings, which we believe have not been reported in
the literature to date, are summarized as follows: (a) BitTor-
rent’s rate-based Tit-For-Tat (TFT) policy fails to prevent un-
fairness across nodes in terms of volume of content served.
This unfairness arises principally in heterogenous settings
when high bandwidth peers connect to low bandwidth ones.
(b) The combination of Pairwise block-level TFT (Section
5.4.2) and the bandwidth matching tracker (Section 5.4.3)
almost eliminates the unfairness of BitTorrent with a very
modest decrease in utilization. (c) Seed bandwidth is critical
to conserve when it is scarce; it is important that the seed
node serve unique blocks at first (which it alone can do) to
ensure diversity in the network, rather than serve duplicate
blocks (a function that can be performed equally well by the
leechers). (d) The Local Rarest First (LRF) policy is critical
in eliminating the “last block” problem and ensuring that ar-
riving leechers quickly have something to offer other nodes.
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