lterators

* An iterator is an object that is used with a

collection to provide sequential access to the
collection elements

— This access allows examination and possible
modification of the elements
* An iterator imposes an ordering on the
elements of a collection even if the collection
itself does not impose any order on the
elements it contains
— |If the collection does impose an ordering on its

elements, then the iterator will use the same
ordering

Adapted from material by Walter Savitch



The Iterator<T> Interface

* Java provides an Iteratoxr<T> interface

— Any object of any class that satisfies the Iterator<T>
interface is an Iterator<T>

* An Iterator<T> does not stand on its own
— It must be associated with some collection object using the
method iterator

— If cis an instance of a collection class (e.g.,
HashSet<String>), the following obtains an iterator

for c:
Iterator iteratorForC = c.iterator();

Adapted from material by Walter Savitch



Methods in the Iterator<T> Interface (Part
1 of 2)

Methods in the Iterator<T> Interface

The Iterator<T> interface is in the java.util package.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementException isin the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java. lang and so do not require any import statement.

public T next()

Returns the next element of the collection that produced the iterator.
Throws a NoSuchElementException if there is no next element.

(continued)

Adapted from material by Walter Savitch



Methods in the Iterator<T> Interface (Part
2 of 2)

Methods in the Iterator<T> Interface

public boolean hasNext()

Returns true if next () has not yet returned all the elements in the collection; returns false otherwise.

public void remove() (Optional)

Removes from the collection the last element returned by next.

This method can be called only once per call to next. If the collection is changed in any way, other than
by using remove, the behavior of the iterator is not specified (and thus should be considered unpredict-
able).

Throws I1legalStateException if the next method has not yet been called, or the remove method
has already been called after the last call to the next method.

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator<T>.

Adapted from material by Walter Savitch



Using an Iterator with a HashSet<T> Object

e AHashSet<T> object imposes no order on the
elements it contains

 However, an iterator will impose an order on the
elements in the hash set

— That is, the order in which they are produced by next ()

— Although the order of the elements so produced may be

duplicated for each program run, there is no requirement
that this must be the case

Adapted from material by Walter Savitch



An Iterator (Part 1 of 3)

An Iterator

=] o w1 I W

]

10

11

import java.util.HashSet;
import java.util.Iterator;

public class HashSetIteratorDemo
{
public static void main(String[] args)
{
HashSet<String> s = new HashSet<5tring>();

s.add("health");

s.add("love"):
s.add("money")

System.out.println("The set contains:");

(continued)

Adapted from material by Walter Savitch



An Iterator (Part 2 of 3)

An Iterator

12 Iterator<String> i = s.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());
15 i.remove();
16 System.out.println();
17 System.out.println("The set now contains:"); 2 3
You cannot “reset” an
18 b iterator “to the beginning.”
19 while (i.hasNext()) o da__g Sfcomrl.t_'gr:[auan’
20 System.out.println(i.next()); e re et
iterator.
21 System.out.println("End of program.");
22 }
23 1}

(continued)

Adapted from material by Walter Savitch



An Iterator (Part 3 of 3)

An Iterator

SAMPLE DIALOGUE

The set contains:
money

love

health

The set now contains:

money
love
End of program.

The HashSet<T> object does not order the
elements it contains, but the iteratorimposes an
order on the elements.

Adapted from material by Walter Savitch



Tip: For-Each Loops as Iterators

e Although it is not an iterator, a for-each loop
can serve the same purpose as an iterator

— A for-each loop can be used to cycle through each
element in a collection

* For-each loops can be used with any of the
collections discussed here

Adapted from material by Walter Savitch



For-Each Loops as Iterators (Part 1 of 2)

For-Each Loops as Iterators

~] " W B W J

oo

10

11

import java.util.HashSet;
import java.util.Iterator;

public class ForEachDemo

{

public static void main(String[] args)

{
HashSet<String> s = new HashSet<String>();

s.add("health");
s.add("love");
s.add("money");

System.out.println("The set contains:");

(continued)

Adapted from material by Walter Savitch



For-Each Loops as Iterators

For-Each Loops as Iterators (Part 2 of 2)

12
13
14
15
16
17

18

19
20

21
22

23
24
25

String last = null;
for (String e : s)
{
last = e;
System.out.println(e);
1

s.remove(last);

System.out.println();

System.out.println("The set now contains:");

for (String e : s)
System.out.println(e);

System.out.println("End of program.");

Adapted from material by Walter Savitch



The ListIterator<T>

Interface

e The ListIterator<T> interface extends the
Iterator<T> interface, and is designed to work
with collections that satisfy the List<T> interface

— AListIterator<T> has all the methods that an
Iterator<T> has, plus additional methods

— AListIterator<T> can move in either direction along
a list of elements

— AListIterator<T> has methods, such as set and
add, that can be used to modify elements

Adapted from material by Walter Savitch



Methods in the ListIterator<T> Interface
(Part 1 of 4)

Methods in the ListIterator<T> Interface

The ListIterator <T> interface is in the java.util package.

The cursor position is explained in the text and in Display 16.11.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementExceptionisin the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

public T next()

Returns the next element of the list that produced the iterator. More specifically, returns the element
immediately after the cursor position.
Throws a NoSuchElementException if there is no next element.

(continued)

Adapted from material by Walter Savitch



Methods in the ListIterator<T> Interface
(Part 2 of 4)

Methods in the ListIterator<T> Interface

public T previous()

Returns the previous element of the list that produced the iterator. More specifically, returns the element
immediately before the cursor position.
Throws a NoSuchElementException if there is no previous element.

public boolean hasNext()

Returns true if there is a suitable element for next () to return; returns false otherwise.

public boolean hasPrevious()

Returns true if there is a suitable element for previous() to return; returns false otherwise.

public int nextIndex()

Returns the index of the element that would be returned by a call to next (). Returns the list size if the
cursor position is at the end of the list.

(continued)

Adapted from material by Walter Savitch



Methods in the ListIterator<T> Interface
(Part 3 of 4)

Methods in the ListIterator<T> Interface

public int previousIndex()

Returns the index that would be returned by a call to previous (). Returns —1 if the cursor position is at
the beginning of the list.

public void add(T newElement) (Optional)

Inserts newElement at the location of the iterator cursor (that is, before the value, if any, that would be
returned by next () and after the value, if any, that would be returmed by previous()).

Cannot be used if there has been a call to add or remove since the last call to next() or previous().
Throws I1legalStateException if neither next () nor previous() has been called, or the add or
remove method has already been called after the last call to next () or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this Itera-
tor<T>.

Throws a ClassCastException if the class of newElement prevents it from being added.

Throws an I1legalArgumentException if some property other than the class of newElement pre-
vents it from being added.

(continued)

Adapted from material by Walter Savitch



Methods in the ListIterator<T> Interface
(Part 4 of 4)

Methods in the ListIterator<T> Interface

public void remove() (Optional)

Removes from the collection the last element returned by next () or previous().

This method can be called only once per call to next () or previous().

Cannot be used if there has been a call to add or remove since the last call to next () or previous().
Throws I1legalStateException if neither next () nor previous() has been called, or the add or
remove method has already been called after the last call to next () or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator<T>.

public void set(T newElement) (Optional)

Replaces the last element returned by next () or previous () with newElement.

Cannot be used if there has been a call to add or remove since the last call to next () or previous().
Throws an UnsupportedOperationException if the set operation is not supported by this Itera-
tor<T>.

Throws IllegalStateException if neither next () nor previous () has been called, or the add or
remove method has been called since the last call to next () or previous().

Throws an ClassCastException if the class of newElement prevents it from being added.

Throws an I1legalArgumentException if some property other than the class of newElement pre-
vents it from being added.

Adapted from material by Walter Savitch



The ListIterator<T> Cursor

* Every ListIterator<T> has a position marker known as

the cursor

— If the list has n elements, they are numbered by indices 0 through n-1,
but there are n+1 cursor positions

— When next () is invoked, the element immediately following the
cursor position is returned and the cursor is moved forward one cursor
position

— When previous () is invoked, the element immediately before the
cursor position is returned and the cursor is moved back one cursor
position

Adapted from material by Walter Savitch



ListIterator<T> Cursor Positions

ListIterator<T> Cursor Positions

List

Celement 0] element 1 element 2 element n-1

Cursor positions
The default initial cursor position is the leftmost one.

Adapted from material by Walter Savitch



Pitfall: next and previous Can Return a
Reference

Theoretically, when an iterator operation returns an
element of the collection, it might return a copy or
C

one of the element, or it might return a reference
to the element

Iterators for the standard predefined collection
classes, such as ArrayList<T> and
HashSet<T>, actually return references

— Therefore, modifying the returned value will modify the
element in the collection

Adapted from material by Walter Savitch



An lterator Returns a Reference (Part 1

of 4)

An Iterator Returns a Reference

N 2

~NoOoOO v B W

10

11

import java.util.ArraylList; The class Date is defined in Display 4.13, but you can
import java.util.Iterator; easily guess all you need to know about Date for this
example.

public class IteratorReferenceDemo

{

public static void main(String[] args)

{

ArraylList<Date> birthdays = new ArraylList<Date>();

birthdays.add(new Date(1l, 1, 1990));
birthdays.add(new Date(2, 2, 1990));
birthdays.add(new Date(3, 3, 1990));

System.out.println("The list contains:");

(continued)

Adapted from material by Walter Savitch



An lterator Returns a Reference (Part
2 of 4)

An Iterator Returns a Reference

12 Iterator<Date> i = birthdays.iterator();

13 while (i.hasNext())

14 System.out.println(i.next());

15 i = birthdays.iterator();

16 Date d = null; //To keep the compiler happy.
17 System.out.println("Changing the references.");
18 while (i.hasNext())

19 {

20 d = i.next();

21 d.setDate(4, 1, 1990);

22 }

(continued)

Adapted from material by Walter Savitch



An lterator Returns a Reference (Part

3 of 4)

An Iterator Returns a REfE'fEﬂCE

23

24
25
26

27
28
29

System.out.println("The list now contains:");

i = birthdays.iterator();
while (i.hasNext())
System.out.println(i.next());

System.out.println("April fool!");

(continued)

Adapted from material by Walter Savitch



An lterator Returns a Reference (Part 4
of 4)

An Iterator Returns a Reference

SAMPLE DIALOGUE

The list contains:
January 1, 1990

February 2, 1990

March 3, 1990

Changing the references.
The 1list now contains:
April 1, 1990

April 1, 1990

April 1, 1990

April fool!

Adapted from material by Walter Savitch



Tip: Defining Your Own Iterator Classes

* There is usually little need for a programmer defined
Iterator<T>orListIterator<T> class

* The easiest and most common way to define a collection class
is to make it a derived class of one of the library collection
classes

— By doing this, the iterator () and listIterator () methods
automatically become available to the program

* If a collection class must be defined in some other way, then
an iterator class should be defined as an inner class of the
collection class

Adapted from material by Walter Savitch



