
Iterators

• An iterator is an object that is used with a 
collection to provide sequential access to the 
collection elements
– This access allows examination and possible 

modification of the elements

• An iterator imposes an ordering on the 
elements of a collection even if the collection 
itself does not impose any order on the 
elements it contains
– If the collection does impose an ordering on its 

elements, then the iterator will use the same 
ordering
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The Iterator<T> Interface

• Java provides an Iterator<T> interface
– Any object of any class that satisfies the Iterator<T> 

interface is an Iterator<T>

• An Iterator<T> does not stand on its own
– It must be associated with some collection object using the 

method iterator

– If c is an instance of a collection class (e.g., 
HashSet<String>), the following obtains an iterator 
for c:
Iterator iteratorForC = c.iterator();
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Methods in the Iterator<T> Interface (Part 
1 of 2)
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Methods in the Iterator<T> Interface (Part 
2 of 2)
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Using an Iterator with a HashSet<T> Object

• A HashSet<T> object imposes no order on the 
elements it contains

• However, an iterator will impose an order on the 
elements in the hash set
– That is, the order in which they are produced by next()

– Although the order of the elements so produced may be 
duplicated for each program run, there is no requirement 
that this must be the case
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An Iterator (Part 1 of 3)
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An Iterator (Part 2 of 3)
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An Iterator (Part 3 of 3)
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Tip:  For-Each Loops as Iterators

• Although it is not an iterator, a for-each loop 
can serve the same purpose as an iterator

– A for-each loop can be used to cycle through each 
element in a collection

• For-each loops can be used with any of the 
collections discussed here
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For-Each Loops as Iterators (Part 1 of 2)
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For-Each Loops as Iterators (Part 2 of 2)
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The ListIterator<T>
Interface

• The ListIterator<T> interface extends the 
Iterator<T> interface, and is designed to work 
with collections that satisfy the List<T> interface
– A ListIterator<T> has all the methods that an 
Iterator<T> has, plus additional methods

– A ListIterator<T> can move in either direction along 
a list of elements

– A ListIterator<T> has methods, such as set and 
add, that can be used to modify elements
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Methods in the ListIterator<T> Interface 
(Part 1 of 4)
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Methods in the ListIterator<T> Interface 
(Part 2 of 4)
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Methods in the ListIterator<T> Interface 
(Part 3 of 4)
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Methods in the ListIterator<T> Interface 
(Part 4 of 4)

Adapted from material by Walter Savitch



The ListIterator<T> Cursor

• Every ListIterator<T> has a position marker known as 
the cursor
– If the list has n elements, they are numbered by indices 0 through n-1, 

but there are n+1 cursor positions

– When next() is invoked, the element immediately following the 
cursor position is returned and the cursor is moved forward one cursor 
position

– When previous() is invoked, the element immediately before the 
cursor position is returned and the cursor is moved back one cursor 
position
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ListIterator<T> Cursor Positions
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Pitfall:  next and previous Can Return a 
Reference

• Theoretically, when an iterator operation returns an 
element of the collection, it might return a copy or 
clone of the element, or it might return a reference 
to the element

• Iterators for the standard predefined collection 
classes, such as ArrayList<T> and 
HashSet<T>, actually return references
– Therefore, modifying the returned value will modify the 

element in the collection
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An Iterator Returns a Reference (Part 1 
of 4)
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An Iterator Returns a Reference (Part 
2 of 4)
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An Iterator Returns a Reference (Part 
3 of 4)
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An Iterator Returns a Reference (Part 4 
of 4)
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Tip:  Defining Your Own Iterator Classes

• There is usually little need for a programmer defined 
Iterator<T> or ListIterator<T> class

• The easiest and most common way to define a collection class 
is to make it a derived class of one of the library collection 
classes
– By doing this, the iterator() and listIterator() methods 

automatically become available to the program

• If a collection class must be defined in some other way, then 
an iterator class should be defined as an inner class of the 
collection class
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