
Iterators

• An iterator is an object that is used with a
collection to provide sequential access to the
collection elements
– This access allows examination and possible

modification of the elements

• An iterator imposes an ordering on the
elements of a collection even if the collection
itself does not impose any order on the
elements it contains
– If the collection does impose an ordering on its

elements, then the iterator will use the same
ordering

Adapted from material by Walter Savitch

The Iterator<T> Interface

• Java provides an Iterator<T> interface
– Any object of any class that satisfies the Iterator<T>

interface is an Iterator<T>

• An Iterator<T> does not stand on its own
– It must be associated with some collection object using the

method iterator

– If c is an instance of a collection class (e.g.,
HashSet<String>), the following obtains an iterator
for c:
Iterator iteratorForC = c.iterator();

Adapted from material by Walter Savitch

Methods in the Iterator<T> Interface (Part
1 of 2)

Adapted from material by Walter Savitch

Methods in the Iterator<T> Interface (Part
2 of 2)

Adapted from material by Walter Savitch

Using an Iterator with a HashSet<T> Object

• A HashSet<T> object imposes no order on the
elements it contains

• However, an iterator will impose an order on the
elements in the hash set
– That is, the order in which they are produced by next()

– Although the order of the elements so produced may be
duplicated for each program run, there is no requirement
that this must be the case

Adapted from material by Walter Savitch

An Iterator (Part 1 of 3)

Adapted from material by Walter Savitch

An Iterator (Part 2 of 3)

Adapted from material by Walter Savitch

An Iterator (Part 3 of 3)

Adapted from material by Walter Savitch

Tip: For-Each Loops as Iterators

• Although it is not an iterator, a for-each loop
can serve the same purpose as an iterator

– A for-each loop can be used to cycle through each
element in a collection

• For-each loops can be used with any of the
collections discussed here

Adapted from material by Walter Savitch

For-Each Loops as Iterators (Part 1 of 2)

Adapted from material by Walter Savitch

For-Each Loops as Iterators (Part 2 of 2)

Adapted from material by Walter Savitch

The ListIterator<T>
Interface

• The ListIterator<T> interface extends the
Iterator<T> interface, and is designed to work
with collections that satisfy the List<T> interface
– A ListIterator<T> has all the methods that an
Iterator<T> has, plus additional methods

– A ListIterator<T> can move in either direction along
a list of elements

– A ListIterator<T> has methods, such as set and
add, that can be used to modify elements

Adapted from material by Walter Savitch

Methods in the ListIterator<T> Interface
(Part 1 of 4)

Adapted from material by Walter Savitch

Methods in the ListIterator<T> Interface
(Part 2 of 4)

Adapted from material by Walter Savitch

Methods in the ListIterator<T> Interface
(Part 3 of 4)

Adapted from material by Walter Savitch

Methods in the ListIterator<T> Interface
(Part 4 of 4)

Adapted from material by Walter Savitch

The ListIterator<T> Cursor

• Every ListIterator<T> has a position marker known as
the cursor
– If the list has n elements, they are numbered by indices 0 through n-1,

but there are n+1 cursor positions

– When next() is invoked, the element immediately following the
cursor position is returned and the cursor is moved forward one cursor
position

– When previous() is invoked, the element immediately before the
cursor position is returned and the cursor is moved back one cursor
position

Adapted from material by Walter Savitch

ListIterator<T> Cursor Positions

Adapted from material by Walter Savitch

Pitfall: next and previous Can Return a
Reference

• Theoretically, when an iterator operation returns an
element of the collection, it might return a copy or
clone of the element, or it might return a reference
to the element

• Iterators for the standard predefined collection
classes, such as ArrayList<T> and
HashSet<T>, actually return references
– Therefore, modifying the returned value will modify the

element in the collection

Adapted from material by Walter Savitch

An Iterator Returns a Reference (Part 1
of 4)

Adapted from material by Walter Savitch

An Iterator Returns a Reference (Part
2 of 4)

Adapted from material by Walter Savitch

An Iterator Returns a Reference (Part
3 of 4)

Adapted from material by Walter Savitch

An Iterator Returns a Reference (Part 4
of 4)

Adapted from material by Walter Savitch

Tip: Defining Your Own Iterator Classes

• There is usually little need for a programmer defined
Iterator<T> or ListIterator<T> class

• The easiest and most common way to define a collection class
is to make it a derived class of one of the library collection
classes
– By doing this, the iterator() and listIterator() methods

automatically become available to the program

• If a collection class must be defined in some other way, then
an iterator class should be defined as an inner class of the
collection class

Adapted from material by Walter Savitch

