Huffman coding

An exercise in the use of priority queue

Symbol	Frequency	Symbol	Frequency	Symbol	Frequency
space	186	b	47	g	l5
e	103	d	32	p	l5
t	80	l	32	b	l3
a	64	u	23	v	8
o	63	c	22	k	5
i	57	f	21	j	l
n	57	m	20	q	l
s	$5 l$	w	18	x	l
r	48	y	l6	z	l

Source: Donald Knuth, The Art of Computer Programming (Volume 3) p 441

This table shows the average occurrence of individual letters in every 1000 letters. Each letter can be encoded by a custom binary code.

The problem. How will you encode these symbols so that the binary file has the smallest size?

Straight ASCII (that will use n bytes for coding n characters is not the optimal solution, when you know the frequencies of these characters. An efficient solution will use only a few bits for the frequently used characters, but may use more bits to encode less frequently used characters. Of course this will be a custom encoding scheme.
[Application: saving the transmission bandwidth]

A naïve solution is as follows. Suppose the frequencies of the following five letters satisfy the order $e>a>c>b>d$

Here are the codes:

$$
e=0, a=10, c=110, b=1110, d=1111
$$

This is ok, but may not be optimal when the frequencies are known.

A smaller scale example

e	r	s	t	n	l	z	x
34	22	24	28	15	10	9	8

Frequency in an average sample of size 150 letters

```
Enqueue these in a priority queue
Dequeue (the letter/subtree with smallest count) Dequeue (the letter/subtree with smallest count) Form a subtree by adding a common parent to the above two and enqueue into the priority queue again
```

Repeat these steps till a binary tree is formed.

The tree is shown in the next page. This leads to the following codes.

$$
\begin{array}{cc}
\mathrm{z}=0000 & \mathrm{n}=0110 \\
\mathrm{x}=0001 & \mathrm{l}=0111 \\
\mathrm{r}=001 & \mathrm{e}=10 \\
\mathrm{~s}=010 & \mathrm{t}=11
\end{array}
$$

