Java Collections

Collections

* A Java collection is any class that holds objects and implements the

interface
* Forexample, the class is a Java collection class, and implements all the
methods in the interface

 Collections are used along with iterators

* The interface is the highest level of Java's framework for
collection classes

* All of the collection classes discussed here can be found in package java.util

Adapted from material by Walter Savitch

The Collection Landscape

The Collection Landscape

Collection<T>

List<T>

Implements

AbstractCollection<T>
SortedSet<T>) AbstractSet<T> AbstractList<T>
ArraylList<T> AbstractSequentiallList<T>

TreeSet<T> HashSet<T> LinkedList<T>

Implements

w)
2
f ==
(Y]
£
o
o
E

A single line between two boxes means

Interface . . .
) the lower class or interface is derived

from (extends) the higher one.
Abstract Class

T is a type parameter for the type of
the elements stored in the collection.

Adapted from material by Walter Savitch

Wildcards

* Classes and interfaces in the collection framework can have
parameter type specifications that do not fully specify the type
plugged in for the type parameter

* Because they specify a wide range of argument types, they are known as
wildcards

* Inthe above example, the first argument is of type , While the
second argument can be an with any base type

Adapted from material by Walter Savitch

Wildcards

* A bound can be placed on a wildcard specifying that the type used
must be an ancestor type or descendent type of some class or

interface
* The notation specifies that the argument
plugged in be an object of any descendent class of
* The notation specifies that the argument plugged

in be an object of any ancestor class of

Adapted from material by Walter Savitch

The Collection Framework

* The interface describes the basic operations
that all collection classes should implement
* The method headings for these operations are shown on the next several
slides

* Since an interface is a type, any method can be defined with a
parameter of type

* That parameter can be filled with an argument that is an object of any
class in the collection framework

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 1 of 10)

Method Headings in the Collection<T> Interface

The Collection<T> interface is in the java.util package.
All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caught in a catch block or declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

Although not officially required by the interface, any class that implements the Collection<T> inter-
face should have at least two constructors: a no-argument constructor that creates an empty Collec-
tion<T> object, and a constructor with one parameter of type Collection<? extends T> that
creates a Collection<T> object with the same elements as the constructor argument. The interface does
not specify whether the copy produced by the one-argument constructor is a shallow copy or a deep copy
of its argument.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 2 of 10)

Method Headings in the Collection<T> Interface

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to

determine if target is in the calling object.
Throws a ClassCastException if the type of target is incompatible with the calling object

(optional).
Throws a NullPointerException if target is null and the calling object does not support null ele-

ments (optional).

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 3 of 10)

Method Headings in the Collection<T> Interface

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. Foran ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a NullPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a Nul1lPointerException if collectionOfTargets is null.

public boolean equals(Object other)

This is the equals of the collection, not the equals of the elements in the collection. Overrides the inher-
ited method equals. Although there are no official constraints on equals for a collection, it should be
defined as we have described in Chapter 7 and also to satisfy the intuitive notion of collections being
equal.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 4 of 10)

Method Headings in the Collection<T> Interface

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, retums Integer.MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object.

public Object[] toArray()

Returns an array containing all of the elements in the calling object. If the calling object makes any guar-
antees as to what order its elements are returned by its iterator, this method must return the elements in
the same order.

The array returned should be a new array so that the calling object has no references to the returned
array. (You might also want the elements in the array to be clones of the elements in the collection. How-
ever, this is apparently not required by the interface, since library classes, such as Vector<T>, retum
arrays that contain references to the elements in the collection.)

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 5 of 10)

Method Headings in the Collection<T> Interface

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The argument a is used primarily to
specify the type of the array returned. The exact details are as follows:

The type of the returned array is that of a. If the elements in the calling object fit in the array a, then a is
used to hold the elements of the returned array; otherwise a new array is created with the same type as a.
If a has more elements than the calling object, the element in a immediately following the end of the cop-
ied elements is set to null.

If the calling object makes any guarantees as to what order its elements are returned by its iterator, this
method must return the elements in the same order. (Iterators are discussed in Section 16.2.)

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerExceptionifais null.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 6 of 10)

Method Headings in the Collection<T> Interface

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is only here to make the definition of the Collection<T> interface complete. You can
safely ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if
you need to implement this method, have the method throw an UnsupportedOperationException.

The following methods are optional, which means they still must be implemented, but the implementa-
tion can simply throw an UnsupportedOperationException if, for some reason, you do not want to
give them a “real” implementation. An UnsupportedOperationException is a RunTimeException
and so is not required to be caught or declared in a throws clause.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 7 of 10)

Method Headings in the Collection<T> Interface

public boolean add(T element) (Optional)

Ensures that the calling object contains the specified element. Returns true if the calling object
changed as a result of the call. Returns false if the calling object does not permit duplicates and already
contains element; also returns false if the calling object does not change for any other reason.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of element prevents it from being added to the calling object.
Throws a Nul1PointerException if element is null and the calling object does not support null
elements.

Throws an I1legalArgumentException if some other aspect of element prevents it from being
added to the calling object.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 8 of 10)

Method Headings in the Collection<T> Interface

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the call-
ing object changed as a result of the call; returns false otherwise. If the calling object changes during
this operation, its behavior is unspecified; in particular, its behavior is unspecified if collectionToAdd

is the calling object.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-

ments this interface.
Throws a ClassCastException if the class of an element of collectionToAdd prevents it from being

added to the calling object.
Throws a NullPointerException if collectionToAdd contains one or more null elements and the

calling object does not support null elements, or if collectionToAdd is null.
Throws an IllegalArgumentException if some aspect of an element of collectionToAdd prevents

it from being added to the calling object.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part g of 10)

Method Headings in the Collection<T> Interface

public boolean remove(Object element) (Optional)

Removes a single instance of the element from the calling object, if it is present. Returns true if the call-
ing object contained the element; returns false otherwise.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove. Returns
true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling collection (optional).

Throws a NullPointerException if collectionToRemove contains one or more null elements and
the calling object does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

(continued)

Adapted from material by Walter Savitch

Method Headings in the Collection<T>
Interface (Part 10 of 10)

Method Headings in the Collection<T> Interface

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also contained in the collection saveElements. In
other words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in saveElements are incompati-
ble with the calling object (optional).

Throws a NullPointerException if saveElements contains one or more null elements and the call-
ing object does not support null elements (optional).

Throws a Nul1lPointerException if saveElements is null.

Adapted from material by Walter Savitch

Collection Relationships

* There are a number of different predefined classes that implement the
interface

* Programmer defined classes can implement it also

* A method written to manipulate a parameter of type will
work for all of these classes, either singly or intermixed

* There are two main interfaces that extend the interface:
The interface and the interface

Adapted from material by Walter Savitch

Collection Relationships

* Classes that implement the interface do not allow an
elementin the class to occur more than once

* The interface has the same method headings as the
interface, but in some cases the semantics (intended
meanings) are different

* Methods that are optional in the interface are required
in the interface

Adapted from material by Walter Savitch

Collection Relationships

* Classes that implement the interface have their elements ordered
as on a list
* Elements are indexed starting with zero
* A class that implements the interface allows elements to occur more than once

* The interface has more method headings than the
interface

 Some of the methods inherited from the interface have different
semantics in the interface

* The class implements the interface

Adapted from material by Walter Savitch

Methods in the

* The Set<T> interface has the same method headings as the
Collection<T> interface, butin some cases the semantics
are different. For example the add methods:

The Set<T> interface isinthe java.util package.
The Set<T> interface extends the Collection<T> interface and has all the same method headings. However, the
semantics of the add methods vary as described below.

public boolean add(T element) (Optional)

If element is not already in the calling object, element is added to the calling object and true is returned. If element is in the
calling object, the calling object is unchanged and false is returned.

public boolean addAll (Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the calling object changed
as a result of the call; returns false otherwise. Thus, if collectionToAdd is a Set<T>, then the calling object is changed
to the union of itself with collectionToAdd.

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 1 of 16)

The List<T> interface has more method headings than the Collection<T> interface.

Methods in the List<T> Interface

The List<T> interface is in the java.util package.

The List<T> interface extends the Collection<T> interface.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java. lang and so do not require any import
statement.

Although not officially required by the interface, any class that implements the List<T> interface should
have at least two constructors: a no-argument constructor that creates an empty List<T> object, and a
constructor with one parameter of type Collection<? extends T> that creates a List<T> object
with the same elements as the constructor argument. If the argument imposes an ordering on its ele-
ments, then the List<T> created should preserve this ordering.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
2 of 16)

Methods in the List<T> Interface

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if targetis null and the calling object does not support null ele-
ments (optional).

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. Foran ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object. The elements need not be in the same order or have the same multiplicity in collection-
OfTargets and in the calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a Nul1lPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a Nul1lPointerException if collectionOfTargets is null.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
3 of 16)

Methods in the List<T> Interface

public boolean equals(Object other)

If the argument is a List<T>, returns true if the calling object and the argument contain exactly the same
elements in exactly the same order; otherwise returns false. If the argument is nota List<T>, false s

returned.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger .MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.2.)

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 4 of 16)

Methods in the List<T> Interface

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements in the returned array
are in the same order as in the calling object. A new array must be returned so that the calling object has
no references to the returned array.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the

type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The elements in the returned array
are in the same order as in the calling object. The argument a is used primarily to specify the type of the
array returned. The exact details are described in the table for the Collection<T> interface (Display
16.2).

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerExceptionifaisnull.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 5 of 16)

Methods in the List<T> Interface

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in
this book. This entry is here only to make the definition of the 1ist interface complete. You can safely
ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if you
need to implement this method, have it throw an UnsupportedOperationException.

As with the Collection<T> interface, the following methods are optional, which means they still must
be implemented, but the implementation can simply throw an UnsupportedOperationException if
for some reason you do not want to give them a “real” implementation. An UnsupportedOperation-
Exceptionisa RunTimeException and so is not required to be caught or declared in a throws
clause.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 6 of 16)

Methods in the List<T> Interface

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Adds all of the elements in collectionToAdd to the end of the calling object’s list. The elements are
added in the order they are produced by an iterator for collectionToAdd.

Throws an UnsupportedOperationException if the addA11l method is not supported by the calling
object.

Throws a ClassCastException if the class of an element in collectionToAdd prevents it from being
added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of an element in collectionToAdd prevents
it from being added to the calling object.

public boolean remove(Object element) (Optional)

Removes the first occurrence of element from the calling object’s list, if it is present. Returns true if the
calling object contained the element; returns false otherwise.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

Throws an UnsupportedOperationException if the remove method is not supported by the calling
object. (continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 7 of 16)

Methods in the List<T> Interface

public boolean add(T element) (Optional)

Adds element to the end of the calling object’s list. Normally returns true. Returns false if the opera-
tion failed, but if the operation failed, something is seriously wrong and you will probably get a run-time
error anyway.

Throws an UnsupportedOperationException if the add method is not supported by the calling object.
Throws a ClassCastException if the class of element prevents it from being added to the calling
object.

Throws a Nul1PointerException if element is null and the calling object does not support null
elements.

Throws an I1legalArgumentException if some aspect of element prevents it from being added to
the calling object.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
8 of 16)

Methods in the List<T> Interface

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also in collectionToRemove. Returns true if the
calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the removeAll method is not supported by the call-
ing object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with collectionToRemove (optional).

Throws a Nul1lPointerException if the calling object contains one or more null elements and col-
lectionToRemove does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if the clear method is not supported by the calling object.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part g of 16)

Methods in the List<T> Interface

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also in the collection saveElements. In other
words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the retainAll method is not supported by the calling
object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with saveElements (optional).

Throws a Nul1lPointerException if the calling object contains one or more null elements and
saveElements does not support null elements (optional).

Throws a Nul1lPointerException if the saveElements is null.

The following methods are in the List<T> interface but were not in the Collection<T> interface.
Those that are optional are noted.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 10 of 16)

Methods in the List<T> Interface

public void add(int index, T newElement) (Optional)

Inserts newElement in the calling object’s list at location index. The old elements at location index
and higher are moved to higher indices.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if this add method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a NullPointerException if newElement is null and the calling object does not support
null elements.

Throws an I'llegalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 11 of 16)

Methods in the List<T> Interface

public boolean addAll(int index,
Collection<? extends T> collectionToAdd) (Optional)

Inserts all of the elements in collectionToAdd to the calling object’s list starting at location index.
The old elements at location index and higher are moved to higher indices. The elements are added in
the order they are produced by an iterator for collectionToAdd.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if the addA11l method is not supported by the calling
object.

Throws a ClassCastException if the class of one of the elements of collectionToAdd prevents it
from being added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of one of the elements of collectionToAdd
prevents it from being added to the calling object.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
12 of 16)

Methods in the List<T> Interface

public T get(int index)

Returns the object at position index.
Throws an IndexOutOfBoundsException if the index is not in the range:

O <= index < size()

public T set(int index, T newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position is
returned.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

Throws an UnsupportedOperationException if the set method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a Nul1lPointerException if newElement is null and the calling object does not support
null elements.

Throws an I1legalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface
(Part 13 of 16)

Methods in the List<T> Interface

public T remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to the left
(subtracts one from their indices). Returns the element that was removed from the calling object.

Throws an UnsupportedOperationException if the remove method is not supported by the calling
object.
Throws an IndexOutOfBoundsException if index does not satisfy:
0 <= index < size()
(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
14 of 16)

Methods in the List<T> Interface

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if targetis null and the calling object does not support null ele-
ments (optional).

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
15 of 16)

Methods in the List<T> Interface

public List<T> subList(int fromIndex, int toIndex)

Returns a view of the elements at locations fromIndex to toIndex of the calling object; the object at
fromIndex is included; the object, if any, at toIndex is not included. The view uses references into the
calling object; so, changing the view can change the calling object. The returned object will be of type

List<T> but need not be of the same type as the calling object. Returns an empty List<T> if fromIn-

dex equals toIndex.
Throws an IndexOutOfBoundsException if fromIndex and toIndex do not satisfy:

0 <= fromIndex <= tolndex <= size()

(continued)

Adapted from material by Walter Savitch

Methods in the List<T> Interface (Part
16 of 16)

Methods in the List<T> Interface

ListIterator<T> listIterator()

Returns a list iterator for the calling object. (Iterators are discussed in Section 16.2.)

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by the iter-
ator is the one at index. (Iterators are discussed in Section 16.2.)
Throws an IndexOutOfBoundsException if index does not satisfy:

0 <= index <= size()

Adapted from material by Walter Savitch

Pitfall: Optional Operations

* When an interface lists a method as "optional," it must still be
implemented in a class that implements the interface

* The optional part means that it is permitted to write a method that does
not completely implement its intended semantics

* However, if a trivial implementation is given, then the method body should
throw an

Adapted from material by Walter Savitch

Tip: Dealing with All Those Exceptions

The tables of methods for the various collection interfaces
and classes indicate that certain exceptions are thrown
* These are unchecked exceptions, so they are useful for
debugging, but need not be declared or caught

* In an existing collection class, they can be viewed as run-
time error messages

* In a derived class of some other collection class, most or
all of them will be inherited

* In a collection class defined from scratch, if it is to
implement a collection interface, then it should throw the
exceptions that are specified in the interface

Adapted from material by Walter Savitch

Concrete Collections Classes

* The concrete class implements the
interface, and can be used if additional
methods are not needed

* The class implements all the methods in the
interface, and adds only constructors

* The class is implemented using a hash table

* The and classes
implement the interface, and can be used if
additional methods are not needed

e Both the and interfaces
implement all the methods in the interface

e Either class can be used when a with efficient
random access to elements is needed

Adapted from material by Walter Savitch

Concrete Collections Classes

* The concrete class is a concrete derived class of the
abstract class
* When efficient sequential movement through a list is needed, the
class should be used

* The interface and the concrete class are
designed for implementations of the interface that provide for rapid
retrieval of elements

* The implementation of the class is similar to a binary tree, but with ways to do inserting
that keep the tree balanced

Adapted from material by Walter Savitch

Methods in the HashSet<T> Class
(Part 1 of 2)

Methods in the HashSet<T> Class

The HashSet<T> class is in the java.util package.

The HashSet<T> class extends the AbstractSet<T> class and implements the Set<T> interface.

The HashSet<T> class implements all of the methods in the Set<T> interface (Display 16.3). The only
other methods in the HashSet<T> class are the constructors. The three constructors that do not involve
concepts beyond the scope of this book are given below.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or

declared in a throws clause.
All the exception classes mentioned are in the package java. lang and so do not require any import
statement.

public HashSet()

Creates a new, empty set.

(continued)

Adapted from material by Walter Savitch

Methods in the HashSet<T> Class
GEl P Xe i)

Methods in the HashSet<T> Class

public HashSet(Collection<? extends T> c)

Creates a new set that contains all the elements of c.
Throws a NullPointerException if cis null.

public HashSet(int initialCapacity)

Creates a new, empty set with the specified capacity.
Throws an I1legalArgumentException if initialCapacity is less than zero.

The methods are the same as those described for the Set<T> interface

Adapted from material by Walter Savitch

HashSet<T> Class Demo (1 of 4)

t t
B

4]
T n =~

System.out.print(i.next() +
em.out.println() ;

static void main(String[] arg
Set<String> round = new Has > tring>() ;
shSet<String> green = new HashSet<LString>() ;

// Add some
round.add ("t
round.add ("t
round.add ("t
round.add ("g

Adapted from material by Walter Savitch

HashSet<T> Class Demo (2 of 4)

System.out.println("Contents of set round: ");
outputSet (round) ;

System.out.println (" \n ents of set g 1 "),
outputSet (green) ;

stem.out.println (" \nba in) nd'? " + round.contains("ball™));

Yy
ystem.out.println ("bz in set 'c : green.contains("ball"));

2

ystem.out.println("\nball and peas et
((luund.guntdlns(”hill”) && (lnund Lunfd ol; ||
(green.contains ("ba ontailr : s")))));
System.out.println("pie - 5 -
((luund.guntdlns('l 21 && (round.contains("g 1ﬂ"))) ||
(green.contains("pie") && (green.contains("grass™)))));

2
2
5
2
2
26
5
28
5

3

Y]
O WO CC

w W
S W N

)LD

&Y
n

Adapted from material by Walter Savitch

HashSet<T> Class Demo (3 of 4)

// To union two sets we use the addAll method.
HashSet<String> setUnion = new Has huef<5 ring>(round) ;
round.addAll (green) ;

System.out.println("\nUnion of green and round:");
outputSet (setUnion) ;

two sets > use > removeAll method.

ing> setlnter : t<String>(round) ;
leluveAll(qlee
Pm.uut.pllnfln("\” nte ction of green and round:");
utSet (setInter) ;
em.uut.pllnfln(),

Adapted from material by Walter Savitch

HashSet<T> Class Demo (4 of 4)

SAMPLE OUTPUT

Contents of set round:
grapes ple ball peas

Contents of set green:
grass garden hose grapes peas

ball in set round? true
ball in set green? false

ball and peas 1in same set? true
ple and grass 1in same set? false

Union of green and round:
garden hose grass peas ball pie grapes

Intersection of green and round:
peas grapes

Adapted from material by Walter Savitch

Using HashSet with your own Class

* If you intend to use the class with your own class as
the parameterized type T, then your class must override the
following methods:

* public 1nt hashCode() ;
* Ideally returns a unique integer for this object

* public boolean equals (Object obj);
* Indicates whether or not the reference object is the same as the parameter obj

Adapted from material by Walter Savitch

Pitfall: Omitting the <T>

* When the or corresponding class name is omitted from a
reference to a collection class, this is an error for which the
compiler may or may not issue an error message (depending on the
details of the code), and even if it does, the error message may be
quite strange

* Look for a missing or when a program that uses
collection classes gets a strange error message or doesn't run correctly

Adapted from material by Walter Savitch

The Map Framework

* The Java map framework deals with collections of ordered pairs
* For example, a key and an associated value

* Objects in the map framework can implement mathematical functions and
relations, so can be used to construct database classes

* The map framework uses the interface, the
class, and classes derived from the class

Adapted from material by Walter Savitch

The Map Landscape

SortedMap<K,V>

3
=2
@D
3
(1)
S
=
7

TreeMap<K\V> |

Interface '
Abstract Class '
Concrete Cass |

AbstractMap<K,\V>

HashMap<K\> |

Asingle line between two boxes means
the lower classor interface isderived
from (extends) the higher one.

Kand V are type parametersfor the type of
the keysand elementsstored in the map.

Adapted from material by Walter Savitch

The Map<K,V> Interface (1 of 3)

Method Headings in the Map<K, V> Interface

The Map<K,V> interface is in the java.util package.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Map<K, V> interface
should have at least two constructors: a no-argument constructor that creates an emptyMap<K,V>
object, and a constructor with one Map<K,V> parameter that creates a Map<K, V> object with the
same elements as the constructor argument. The interface does not specify whether the copy pro-
duced by the one-argument constructor is a shallow copy or a deep copy of its argument.

METHODS
boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public boolean containsValue(Object value)

Returns true if the calling object contains at least one or more keys that map to an instance of
value.

public boolean containsKey(Object key)

Returns true if the calling object contains key as one of its keys.

Adapted from material by Walter Savitch

The Map<K,V> Interface (2 of 3)

public boolean equals(Object other)

This is the equals of the map, not the equals of the elements in the map. Overrides the inher
rted method equals.

public int size()

Returns the number of (key, value) mappings in the calling object.

public int hashCode()

Returns the hash code value for the calling object.

public Set<Map.Entry<K,V>> entrySet()

Returns a set view consisting of (key, value} mappings for all entries in the map. Changes to the
map are reflected in the set and vice-versa.

public Collection<V> values()

Returns a collection view consisting of all values in the map. Changes to the map are reflected in
the collection and vice-versa.

public V get(Object key)

Returns the value to which the calling object maps key. If key is not in the map, then null is
returned. Note that this does not always mean that the key is not in the map since it is possible to
map a key to null. The containsKey method can be used to distinguish the two cases.

Adapted from material by Walter Savitch

The Map<K,V> Interface (3 of 3)

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented, but the imple-
mentation can simply throw an UnsupportedOperationException if, for some reason, you do
not want to give the methods a “real” implementation. An UnsupportedOperationException is
a RunTimeException and so is not required to be caught or declared in a throws clause.

public V put(K key, V value) (Optional)

Associates key to value in the map. If key was associated with an existing value then the old
value is overwritten and returned. Otherwise null is returned.

public void putAll(Map<? extends K,? extends V> mapToAdd) (Optional)
Adds all mappings of mapToAdd into the calling object’s map.

public V remove(Object key) (Optional)

Removes the mapping for the specified key. If the key is not found in the map then null is
returned; otherwise the previous value for the key is returned.

Adapted from material by Walter Savitch

Concrete Map Classes

* Normally you will use an instance of a Concrete Map Class

* Here we discuss the Class
* Internally, the class uses a hash table
* No guarantee as to the order of elements placed in the map.

* If you require order then you should use the class or the
class
 LinkedHashMap: Hash table and linked list implementation of the Map interface,

with predictable iteration order. This implementation differs from HashMap in that it
maintains a doubly-linked list running through all of its entries.

* TreeMap: The map is sorted according to the natural ordering of its keys, or by a
Comparator provided at map creation time, depending on which constructor is used.
This implementation provides guaranteed log(n) time cost for the containsKey, get,
put and remove operations.

Adapted from material by Walter Savitch

HashMap<K,V> Class

* The initial capacity specifies how many “buckets” exist in the hash table.
 This would be analogous to the size of the array of the hash table covered in Chapter 1s.
* Alarger initial capacity results in faster performance but uses more memory

 The load factoris a number between o and 1.

 This variable specifies a percentage such that if the number of elements added to the
hash table exceeds the load factor then the capacity of the hash table is automatically
increased.

* The default load factor is 0.75 and the default initial capacity is 16

Adapted from material by Walter Savitch

The HashMap<K,V> Class (1 of 2)

Methods in the HashMap<K, V> Class

The HashMap<K,V> class is in the java.util package.

The HashMap<K, V> class extends the AbstractMap<K, V> class and implements the Map<K,V>
interface.

The HashMap<K, V> class implements all of the methods in the Map<K, V> interface (Display 16.9).
The only other methods in the HashMap<K, V> class are the constructors.

All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.

All the exception classes mentioned are in the package java. lang and so do not require any
import statement.

public HashMap()

Creates a new, empty map with a default initial capacity of 16 and load factor of 0.75.

public HashMap(int initialCapacity)
Creates a new, empty map with a default capacity of initialCapacity and load factor of 0.75.
Throws a I1legalArgumentException if initialCapacity is negative.

public HashMap(int initialCapacity, float loadFactor)

Creates a new, empty map with the specified capacity and load factor.

Throws a I1legalArgumentException if initialCapacity is negative or loadFactor nonpos-
itive.

Adapted from material by Walter Savitch

The HashMap<K,V> Class (2 of 2)

public HashMap(Map<? extends K,? extends V> m)

Creates a new map with the same mappings asm. The initialCapacity is set to the same size
as mand the loadFactor to 0.75.

Throws a NullPointerExceptionif mis null.

public Object clone()

Creates a shallow copy of this instance and returns it. The keys and values are not cloned.

The remainder of the methods are the same as those described for the Map<K, V> interface

All of the Map Interface methods are supported, such as get
and put

Adapted from material by Walter Savitch

o~ Oy U= Ww N

HashMap Example (1 of 3)

// This class uses the Employee class defined in Chapter 7.
import java.util.HashMap;
import java.util.Scanner;
Epublic class HashMapDemo {
- public static vold main(String[] args){
// First create a hashmap with an initial size of 10 and
// the default load factor
HashMap<String,Employee> employees = new HashMap<String,Employee>(10);

// Add several employees objects to the map using

// their name as the key

employees.put ("Joe", new Employee ("Joe" ,new Date("September", 15, 1970)));
employees.put ("Andy", new Employee ("Andy",new Date("August"™, 22, 1971)));
employees.put ("Creg", new Employee("Creg",new Date("March"™, 9, 1972)));
employees.put ("Kiki", new Employee("Kiki",new Date("October", &, 1970)));
employees.put ("Antoinette", new Employee("Antoinette" ,new Date("Mavy", 2, 1959)));
System.out.print ("Added Joe, Andy, Greg, Kiki, ");

System.out.println("and Antoinette to the map.");

Adapted from material by Walter Savitch

HashMap Example (2 of 3)

o

// Ask the user to type a name. print it out.
Scanner keyboard =
String name = "";
do
m.out.print ("\nkEnter a name to look up in the map. ");
m.out.println("Press enter to qguit.");
keyboard.nextLine () ;
if (employees.containsKey(name)) {
Employee e = employees.get (name) ;
System.out.println("Name found: " + e.toString())

y 1o W N

-

;
;
:
;
;
:
;
,

w N
O o

o

}
else 1f ('name.equals("")) {
System.out.println("Name not found.");

) W

w W
B W N

}

} while ('name.equals(""));

) W

%)
v U

w
(@)

Adapted from material by Walter Savitch

HashMap Example (3 of 3)

SAMPLE OUTPUT

Added Joe, Andy, Greg, Kiki, and Antoinette to the

Enter a name to look up in the map.
Joe
Name found: Joe September 15, 1970

Enter a name to look up in the map.
Andy
Name found: Andy August 22, 1971

Enter a name to look up in the map.
Kiki
Name found: Kiki October 8, 1970

Enter a name to look up in the map.
Myla
Name not found.

Press enter to

Press enter to

Press enter to

Press enter to

map .

quit.

quit.

quit.

quit.

Adapted from material by Walter Savitch

Using HashMap with your own Class

» Just like the HashSet class, If you intend to use the HashMap<K,V>
class with your own class as the parameterized type K, then your
class must override the following methods:

* public 1nt hashCode() ;
* Ideally returns a unique integer for this object

* public boolean equals (Object obj);
* Indicates whether or not the reference object is the same as the parameter obj

Adapted from material by Walter Savitch

