Using AND for bit manipulation

To check if a register $s0 contains an odd number,
AND it with a mask that contains all O's except a1
in the LSB position, and check if the result is zero
(we will discuss decision making later)

andi $t2, $s0, 1

This uses I-type format (why?):

S5 d

Now we have to test if $t2=10r0

Making decisions

if (i==j) then f=g+h, else f

Use bne = branch-nor-equal, beq = branch-equal, and j = jump

Assume that f, g, h, are mapped into $s0, $s1, $s2
i, j are mapped into $s3, $s4

bne $s3, $s4, Else # goto Else when i#j
add $s0, $s1, $s2 #f=g+h
J Exit # goto Exit

Else: sub $s0, $s1, $s2 #f=g-nh

Exit:

The program counter and control flow

Every machine has a program counter (called PC) that

points to the next instruction to be executed.

1028 Instruction1
1028
1032 Instruction 2
1036 | Instruction 3 PC
Instruction 4
CPU
data
data
MEMORY

Ordinarily, PC is incremented by 4 after each instruction
is executed. A branch instruction alters the flow of

control by modifying the PC.

Compiling a while loop

while (A[i]== k) i=i+j;

Initially $s3, $s4, $s5 contains i, j, k respectively.

Let $s6 store the base of the array A. Each element of A

is a 32-bit word.

Loop: add $t1, $s3, $s3
add $t1, $t1, $t1
add $t1, $t1, $s6
lw $t0, 0($t1)
add $s3, $s3, $s4
bne $t0, $s5, Exit
j Loop

Exit; <next instruction>

#9t1 = 2%

#$t1 = 4%

$t1 contains address of A[i]
$t0 contains $A[i]

Hizi+]

goto Exit if A[i] = k

goto Loop

Note the use of pointers.

Anatomy of a MIPS assembly language

program running on the SPIM simulator

.data

L1: .word 0x2345 # some arbitrary value
L2: .word 0x3366 # some arbitrary value
Res: .space 4

fext

.globl main
main: lw $10, L1($0) #load the first value

lw $t1, L2($0) # load the second value

and $t2, $10, $+1 # compute bit-by-bit AND
or $13, $10, $t1 # compute bit-by-bit OR

sw $13, Res($0) # store result in memory

li $v0, 10 # code for program end

syscall

Another example of input-output

.data
str1: .asciiz "Enter the number:"
align 2 #move to a word boundary
res: .space 4 # reserve space to store result
lext
.globl main
main: li $v0, 4 # code to print string
la $a0, str1
syscall
li $v0, 5 # code to read integer
syscall

move $t0, $v0
add $t1, $t0, $t0
sw $t1, res($0)

move the value to $t0
multiply by 2
store result in memory

li $v0, 1
move $a0, $t1
syscall

code to print integer
move value to be printed to $a0
print to the screen

li $v0, 10
syscall

code for program end

Practice

Add the elements of an array A[0..63]. Assume that the
first element of the array is stored from address 200.

Store the sum in address 800.

Read Appendix B of the textbook for
a list of system calls used by the

SPIM simulator.

