How does an assembler work?

In a two-pass assembler
PASS 1: Symbol table generation
PASS 2: Code generation

Illustration of the two passes (follow the class lecture)
.data
L1: .word 0×2345 \# some arbitrary value
L2: .word 0×3366 \# some arbitrary value
Res: .space 4
.text
.globl main
main: Iw \$+0, L1 (\$0)
In \$+1, L2(\$0) \# load the second value and $\$+2, \$+0, \$+1$ \# compute the bit-by-bit AND
or $\$+3, \$+0, \$+1$ \# compute the bit-by-bit OR
sw $\$+3, \operatorname{Res}(\$ 0) \quad \#$ store result at location in memory
li $\$ v 0,10 \quad \#$ code for program end
syscall

Other architectures

Not all processors are like MIPS.

Example. Accumulator-based machines

A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation.

Load	x	\# into accumulator from memory
Add	y	\# add y from memory to the acc
Store	z	\# store acc to memory as z

Can we have an instruction like add $z, x, y \quad \# z:=x+y,(x, y, z$ in memory)?

For some machines, YES, but not in MIPS! What are the advantages and disadvantages of such an instruction?

Load-store machines

MIPS is a load-store architecture. Only load and store instructions access the memory, all other instructions use registers as operands. What is the motivation?

Register access is much faster than memory access, so the program will run faster.

Reduced Instruction Set Computers (RISC)

- The instruction set has only a small number of frequently used instructions. This lowers processor cost, without much impact on performance.
- All instructions have the same length.
- Load-store architecture.

Non-RISC machines are called CISC (Complex Instruction Set Computer). Example: Pentium

Another classification

3-address add $r 1, r 2, r 3 \quad(r 1 \leftarrow r 2+r 3)$
2-address add $r 1, r 2 \quad(r 1 \leftarrow r 1+r 2)$
1-address add $r 1$ (to the accumulator)
0 -address or stack machines (see below)

Example of stack architecture

Consider evaluating $z=x^{*}(y+z)$

Push x
Pushy
Push z
Add
Multiply
Pop z

Computer Arithmetic

How to represent negative integers? The most widely used convention is 2 's complement representation.

```
+14 = 0,1110
-14 = 1,0010
```

Largest integer represented using n-bits is $+\left(2^{n-1}-1\right)$
Smallest integer represented using n-bits is -2^{n-1}

So, using 4-bits (that includes 1 sign bit), the largest integer is $0,111(=7)$, and the smallest integer is $1,000(=-8)$

Review binary-to decimal and binary-to-hex conversions. Review BCD (Binary Coded Decimal) and ASCII codes. How to represent fractions?

Overflow

$$
\begin{array}{ll}
+12=0,1100 & \\
+2=0,0010 & +12=0,1100 \\
\text { add } & +7=0,0111 \\
+14=0,1110 & ?
\end{array} \begin{aligned}
& ?=1,0011 \text { (WRONG) }
\end{aligned}
$$

Addition of a positive and a negative number does no \dagger lead to overflow. How to detect overflow? Here is a clue.

$$
\begin{array}{lll}
000 \oplus 0=0(O K) & 010 \oplus 1=1(\text { NOT OK }) \\
+12=0,1100 \\
+2=0,0010 \\
\text { add } \\
+14=0,1110 & +7=0,1100 \\
+\quad & +0111
\end{array}
$$

The following sequence of MIPS instructions can detect overflow in signed addition of \$+1 and \$+2:

addu \$+0, \$+1, \$+2	\# add unsigned
xor \$ $\$+3, \$+1, \$+2$	\# check if signs differ
slt \$t3, \$+3, \$zero	\# \$+3=1 if signs differ
bne \$+3, \$zero, no_overflow	
xor \$ $\$+3, \$+0, \$+1$	\# sum sign = operand sign?
slt \$+3, \$t3, \$zero	\# if not, then \$+3=1
bne \$+3, \$zero, overflow	
no_overflow:	
\cdots	
overflow:	
<Do something to handle ov	rflow

