
How does an assembler work?

In a two-pass assembler

PASS 1: Symbol table generation

PASS 2: Code generation

Illustration of the two passes (follow the class lecture)

 .data

L1: .word 0x2345 # some arbitrary value

L2: .word 0x3366 # some arbitrary value

Res: .space 4

 .text

 .globl main

main: lw $t0, L1($0) #load the first value

 lw $t1, L2($0) # load the second value

 and $t2, $t0, $t1 # compute the bit-by-bit AND

 or $t3, $t0, $t1 # compute the bit-by-bit OR

 sw $t3, Res($0) # store result at location in memory

 li $v0, 10 # code for program end

 syscall

Other architectures

Not all processors are like MIPS.
Example. Accumulator-based machines

A single register, called the accumulator, stores the

operand before the operation, and stores the result

after the operation.

Load x # into accumulator from memory

Add y # add y from memory to the acc

Store z # store acc to memory as z

Can we have an instruction like

add z, x, y # z:= x + y, (x, y, z in memory) ?

For some machines, YES, but not in MIPS! What are the

advantages and disadvantages of such an instruction?

Load-store machines
MIPS is a load-store architecture. Only load and store

instructions access the memory, all other instructions use

registers as operands. What is the motivation?

Register access is much faster than memory access, so

the program will run faster.

Reduced Instruction Set Computers (RISC)

• The instruction set has only a small number of

frequently used instructions. This lowers processor

cost, without much impact on performance.

• All instructions have the same length.

• Load-store architecture.

Non-RISC machines are called CISC (Complex Instruction

Set Computer). Example: Pentium

Another classification

3-address add r1, r2, r3 (r1 ← r2 + r3)

2-address add r1, r2 (r1 ← r1 + r2)

1-address add r1 (to the accumulator)

0-address or stack machines (see below)

Example of stack architecture

Consider evaluating z = x * (y + z)

Push x

Push y

Push z

Add

Multiply

Pop z

x x

y

z

x

y+z

x * (y+z)

Computer Arithmetic

How to represent negative integers? The most widely

used convention is 2’s complement representation.

+14 = 0, 1 1 1 0

-14 = 1, 0 0 1 0

Largest integer represented using n-bits is + (2n-1 – 1)

Smallest integer represented using n-bits is - 2n-1

So, using 4-bits (that includes 1 sign bit),

 the largest integer is 0,111 (=7), and

 the smallest integer is 1,000 (= -8)

Review binary-to decimal and binary-to-hex conversions.

Review BCD (Binary Coded Decimal) and ASCII codes.

How to represent fractions?

Overflow

+12 = 0, 1 1 0 0 +12 = 0, 1 1 0 0

+2 = 0, 0 0 1 0 +7 = 0, 0 1 1 1

add add

+14 = 0, 1 1 1 0 ? = 1, 0 0 1 1 (WRONG)

Addition of a positive and a negative number does not

lead to overflow. How to detect overflow? Here is a clue.

 0 0 0⊕ 0 = 0(OK) 0 1 0⊕1= 1 (NOT OK)

+12 = 0, 1 1 0 0 +12 = 0, 1 1 0 0

+2 = 0, 0 0 1 0 +7 = 0, 0 1 1 1

add add

+14 = 0, 1 1 1 0 ? = 1, 0 0 1 1 (WRONG)

The following sequence of MIPS instructions can detect

overflow in signed addition of $t1 and $t2:

addu $t0, $t1, $t2 # add unsigned

xor $t3, $t1, $t2 # check if signs differ

slt $t3, $t3, $zero # $t3=1 if signs differ

bne $t3, $zero, no_overflow

xor $t3, $t0, $t1 # sum sign = operand sign?

slt $t3, $t3, $zero # if not, then $t3=1

bne $t3, $zero, overflow

no_overflow:

. . .

. . .

overflow:

<Do something to handle overflow>

