
Procedure Call

 Procedure

Main

Typically procedure call uses a stack. What is a stack?

Question. Can’t we use a jump instruction to implement a

procedure call?

The stack

Occupies a part of the main memory. In MIPS, it grows

from high address to low address as you push data on the

stack. Consequently, the content of the stack pointer

($sp) decreases.

 Low address

 $sp

 Stack pointer

 High address High address

Item 1

Item 2

Use of the stack in procedure call

Before the subroutine executes, save registers (why?).

Jump to the subroutine using jump-and-link (jal address)

(jal address means ra ← PC+4; PC ← address) For

MIPS, (ra=r31)

After the subroutine executes, restore the registers.

Return from the subroutine using jr (jump register)

(jr ra means PC ← (ra))

Example of a function call

int leaf (int g, int h, int i, int j)

{

 int f;

 f = (g + h) – (i + j);

 return f;

}

The arguments g, h, i, j are put in $a0-$a3.

The result f will be put into $s0, and returned to $v0.

The structure of the procedure

Leaf: addi $sp, $sp, -12 # $sp = $sp-12, make room

 sw $t1, 8($sp) # save $t1 on stack

 sw $t0, 4($sp) # save $t0 on stack

 sw $s0, 0($sp) # save $s0 on stack

The contents of $t1, $t0, $s0 in the main program will not be

overwritten. Now we can use them in the body of the function.

 add $t0, $a0, $a1 # $t0 = g + h

 add $ t1, $a2, $a3 # $t1 = i + j

 sub $s0, $t0, $t1 # $s0 = (g + h) – (i + j)

 Pass g,h,i,j into $a1-$a3

 Return result f into $v0

Main

Procedure

Return the result into the register $v0

add $v0, $s0, $zero # returns f = (g+h)-(i+j) to $v0

Now restore the old values of the registers by popping

the stack.

lw $s0, 0($sp) # restore $s0

lw $t0, 4($sp) # restore $t0

lw $t1, 8($sp) # restore $t1

addi $sp, $sp, 12 # adjust $sp

Finally, return to the main program.

jr $ra # return to caller.

