
1	

Accessing nearby copies of
replicated objects

Greg Plaxton,
Rajmohan Rajaraman,

Andrea Richa

SPAA 1997

2	

Goal

!A set A of m shared objects
resides in a network G.
Design an algorithm of so
that processes can access a
nearby copy of it. Supported
operations are insert, delete,
read (but not write) on
shared objects.

3	

Challenge

!What is the challenge here? Think about this:

1.  if every node maintains a copy, then read is fast, but insert or
delete are very expensive. Also, storage overhead grows.

2.  If the object is stored in an arbitrary node, then the access
may take a long time.

The algorithm must be efficient w.r.t. both time and space

4	

Plaxton Routing	

 Plaxton routing provides an answer: it has been
used in several important P2P networks like
Microsoft’s Pastry and UC Berkeley’s Tapestry
(Zhao, Kubiatowicz, Joseph et al.) that is also the
backbone of Oceanstore, a persistent global-scale
storage system	

5	

Object and Node names

 Objects and nodes acquire names independent
of their location and semantic properties, in the
form of random fixed-length bit-sequences (160
bits) using a hashing algorithm such as SHA-1 .
This leads to roughly even distribution of objects
in the name space)

6	

The Main Idea

 For every object, form a rooted tree. The root
node stores a pointer to the server that stores
the object. The root does not hold a copy of the
object itself. Once you access the root, you can
navigate to the server storing that object.

 How to choose a root for a given object?

7	

The Main idea continued

 Embed an n-node virtual height-balanced tree

T into the network. Each node u maintains

information about copies of the object in the

subtree of T rooted at u.

8	

Choosing the root

 An	
 object’s	
 root	
 is	
 a	
 node	
 whose	
 name	
 matches	
 the	
 object’s	

name	
 in	
 the	
 largest	
 number	
 of	
 trailing	
 bit	
 posi2ons.	
 In	
 case	

there	
 are	
 mul7ple	
 such	
 	
 nodes,	
 choose	
 the	
 node	
 with	
 the	

largest	
 such	
 id.	

 [Life of Pi]: 010 010110101000
 Node X: 110 010110101000
 Node Y: 011 010110101000

 “Life of Pi” will be mapped to Node X

9	

Example of search	

To access a copy, u
searches the subtree under
it. If the copy or a pointer to
the object is available, then
u uses that information,
otherwise, it passes the
request to its parent.

u v

w

10	

Plaxton tree

 Plaxton tree (some call it Plaxton mesh) is a
data structure that allows peers to efficiently
locate objects, and route to them across an
arbitrarily-sized network, using a small routing
map at each hop. Each node serves as a
client, server and a router.

11	

Examples of Object names

 Represent node ids and object names as strings of
digits using base = 2b, where b is a fixed positive
integer. Let b=2. Thus, the name of object B = 1032
(base 4 = 2b), name of object C = 3011, name of a
node u = 3122 and so on.

12	

Neighbor map
Consider	
 an	
 example	
 with	
 b=3,	

	
 i.e.	
 the	
 id	
 base	
 2b	
 =	
 8.	
 Level	
 	
 i	

entries	
 match	
 i	
 suffix	
 entries.	
 	
 	

Number	
 of	
 entries	
 per	
 level	
 =	
 	

ID	
 base	
 =	
 8	

Each	
 entry	
 is	
 the	
 suffix	
 of	
 a	

matching	
 node	
 with	
 least	
 cost.	
 	

If	
 no	
 such	
 entry	
 exists,	
 then	
 pick	

the	
 one	
 that	
 has	
 highest	
 id	
 &	

largest	
 suffix	
 match	

	
 	
 These	
 are	
 all	
 primary	
 entries	

y2 y2’

L0 L1 L2 L3

Neighbor map of node 5642

13	

More on neighbor map
In addition to primary entries (lowest access cost), each level contains

secondary entries.
-- A node u is a secondary entry of node x at a level i, if (1) it is not the

primary neighbor, and (2) the cost c(x,u) ≤ c(x,w) for all non-primary
neighbor w with a matching suffix of size i.

-- Each node also stores reverse neighbors for each level. A node y is a
reverse neighbor of x if and only if x is a primary neighbor of y.

-- Each node stores a pointer list (O,y,k) for each object in its subtree, where
O is the object, y is the node holding a copy of A and k is the upper
bound of the cost to access A

All entries are statically chosen, and this needs global knowledge (-)

14	

Neighbor map: another
example

A027
9623

2A53

3187

L2
L0

L1 1553

x

y1
y1
’

y2 y2’

c(x,y1’) > c(x.y1)

c(x,y2’) > c(x.y2)

Size of the routing table: base * log base (n)

Destination =4307

Destination = 7353

Destination=3623

0123

b=4,so node
names are in
Hex (base 24)

First hop for First hop for

Secondary
neighbor

Reverse	
 	

pointer	

15	

Routing Algorithm

To route to root of an object
–  Let shared suffix (between root id and node id) have length s
–  If s = log base (n) (i.e. this node is the root) then done,

else look at level s+1
–  Match the next digit of the destination id
–  Send the message to that node
Eventually the message gets relayed to the destination

This is called suffix routing (one could also use prefix routing).

16	

Example of suffix routing

 Consider routing a message from 005712  627510 (base = 8)	

005712 0 1 2 3 4 5 6 7

340330 0 1 2 3 4 5 6 7

743210 0 1 2 3 4 5 6 7

134510 0 1 2 3 4 5 6 7

307510 0 1 2 3 4 5 6 7

727510 0 1 2 3 4 5 6 7

627510 0 1 2 3 4 5 6 7

005712

340330 743210

307510

134510

727510

627510

How many hops?

17	

Pointer list	

 Each node x has a pointer list P(x):
 P(x) is a list of triples (O, S, k),

-  where O is the object,
-  Node S holds a copy of O,
-  and k is the max cost of the access.

 The pointer list is updated by insert
and delete operations.

Root of O

(O,S,4)

(O,S,1)

(O,S,2)

(O,S,3)

(O,S)

Server S

(O,S,5)

18	

Inserting a copy	

 Intermediate nodes maintain the
minimum cost of access. While
inserting a duplicate copy, the
pointers are modified, so that they
direct to the closest copy

Root of O

(O,S’,2)

(O,S,1)

(O,S,2)

(O,S’,1)

(O,S)

Server S

(O,S’,3)

Server S’

19	

Deleting a copy	

 Removes all pointers to that copy
of the object in the pointer list on
the nodes leading to the root

 Otherwise, it uses the reverse
pointers to update the entry.

Root of O

(O,S’,2)

(O,S,1)

(O,S,2)

(O,S’,1)

(O,S)

Server S

(O,S’,3)

Server S’

(O,S,3)

(O,S,4)

(O,S,5)

20	

Results	

Let C= (max{c(u,v): u,v in V}

Cost of reading a file A of length L(A) from node v by
node u =f(L(A)).c(u,v)

Cost of inserting a new object = O(C)

Cost of deleting an existing object = O(C log n)

21	

Benefits and Limitations	

+ Scalable solution
 Small routing table. All routing done using locally
available data

+ Existing objects are guaranteed to be found

+ Simple fault handling

 1234 1238  1278  1678  5678

 3128  3178  3678

+ Optimal routing distance

22	

Benefits and limitations

- Needs global knowledge to form the neighbor tables. How can we
solve it?

- The root node for each object may be a possible bottleneck.

