

 1

Assembly Language Programming

 2

High-level vs. Assembly language

Consider the following statements

1. a = x + y – z

2. if x > y

then x:= x + y

else x:= x - y

HLL (High Level Language) programs are machine

independent. They are easy to learn, easy to use,

and convenient for managing complex tasks.

Assembly language programs are machine

specific. It is the language that the processor

“directly” understands.

Compiler HLL Assembly
Language

 3

 4

Understanding Assembly Language

Let us begin with data representation. How to

represent

• Signed integers

• Fractions

• Alphanumeric characters Review

• Floating point numbers

• Pictures?

Memory

0 1 0 0 1 0 1 1
1 1 0 1 1 0 1 0

1 00 1 1 0 0 0
0o00

Can you read
the contents
of these
memory
cells?

 5

Visualizing instruction execution

(The main concept is register-transfer operation.

 registers

 Memory

0 x r0

1 y r1 ALU

2 z r2

3 a r3

Address data processor

A register is a fast storage within the CPU

 load x into r1

 load y into r2

a = x + y - z load z into r0

 r3 ← r1 + r2

 r0 ← r3 – r0

 store r0 into a

500

24

-32

0

 6

Assembly language instructions for a

hypothetical machine (not MIPS)

Load x, r1

Load y, r2

Load z, r0

Add r3, r1, r2

Sub r0, r3, r0

Store r0, a

Each processor has a different set of registers, and

different assembly language instructions. The assembly

language instructions of Intel Pentium and MIPS are

completely different.

Motorola 68000 has 16 registers r0-r15

MIPS has 32 registers r0-r31

Pentium has 8 general purpose & 6 segment registers.

 7

Binary or Machine Language program

Both program and data are represented using

only 0’s and 1’s inside a computer. Here is a

sample:

 0 31

 Load address of x

 0 31

 Add r3 r1 r2 unused

These are instruction formats. Each instruction

has a specific format.

0 1 0 1 0 0 1 1 0 0 1 1 0 0 … 0 0 0
0

1 1 0 0 1 0 1 1 0 1 1 0

Operation
code

 8

Can we distinguish program from data?

 Both are bit strings.

 Indistinguishable.

 MEMORY

Normally, the programmer has to tell the machine

(or use some convention) to specify the address of

the first instruction. Incorrect specification will

lead to errors, and the program is most likely to

crash.

 Program

Data

 9

Bits, bytes, words

Bit: 0, 1

Byte: string of 8 bits. Each byte has an address.

Word: one or more bytes (usually 2 or 4 or 8).

0

1 word 0

2

3

4

5 word 1

6

7

01010000

11110000

0000000

11111111

00001111

10111011

00111100

00000111

 10

 0

 4

 8

 12

Byte order in a word

Big Endian order [byte 0, byte 1, byte 2, byte 3]

Little Endian order [byte 3, byte2, byte 1, byte 0]

Word 0

Word 1

Word 2

Word 3

 11

Registers vs. memory

Data can be stored in registers or memory

locations. Memory access is slower (takes

approximately 50 ns) than register access (takes

approximately 1 ns or less).

To increase the speed of computation it pays to

keep the variables in registers as long as possible.

However, due to technology limitations, the number

of registers is quite limited (typically 8-64).

MIPS registers

MIPS has 32 registers r0-r31. The conventional

use of these registers is as follows:

 12

register assembly name Comment

r0

r1

r2-r3

r4-r7

r8-r15

r16-r23

r24-r25

r26-r27

r28

r29

r30

r31

$zero

$at

$v0-$v1

$a0-$a3

$t0-$t7

$s0-$s7

$t8-$t9

$k0-$k1

$gp

$sp

$fp

$ra

Always 0

Reserved for assembler

Stores results

Stores arguments

Temporaries, not saved

Contents saved for later use

More temporaries, not saved

Reserved by operating system

Global pointer

Stack pointer

Frame pointer

Return address

 13

Example assembly language programs

Example 1 f = g + h – i

Assume that f, g, h, i are assigned to $s0, $s1, $s2, $s3

add $t0, $s1, $s2 # register $t0 contains g + h

sub $s0, $t0, $s3 # f = g + h – i

Example 2. g = h + A[8]

Assume that g, h are in $s1, $s2. A is an array of words,

the elements are stored in consecutive locations of the

memory. The base address is stored in $s3.

lw t0, 32($s3) # t0 gets A[8], 32= 4x 8

add $s1, $s2, $t0 # g = h + A[8]

 14

Machine language representations

Instruction “add” belongs to the R-type format.

 6 5 5 5 5 6

 src src dst

add $s1, $s2, $t0 will be coded as

 6 5 5 5 5 6

The function field is an extension of the opcode, and

they together determine the operation.

Note that “sub” has a similar format.

opcode rs rt rd shift amt function

 0 18 8 17 0 32

