
MIPS registers

register assembly name Comment

r0

r1

r2-r3

r4-r7

r8-r15

r16-r23

r24-r25

r26-r27

r28

r29

r30

r31

$zero

$at

$v0-$v1

$a0-$a3

$t0-$t7

$s0-$s7

$t8-$t9

$k0-$k1

$gp

$sp

$fp

$ra

Always 0

Reserved for assembler

Stores results

Stores arguments

Temporaries, not saved

Contents saved for later use

More temporaries, not saved

Reserved by operating system

Global pointer

Stack pointer

Frame pointer

Return address

MIPS insruction formats

Instruction “add” belongs to the R-type format.

 6 5 5 5 5 6

 src src dst

add $s1, $s2, $t0 will be coded as

 6 5 5 5 5 6

The “function” field is an extension of the opcode, and

they together determine the operation.

Note that “sub” has a similar format.

opcode rs rt rd shift amt function

 0 18 8 17 0 32

Instruction “lw” (load word) belongs to I-type format.

 6 5 5 16

 base dst offset

lw $t0, 32($s3) will be coded as

 6 5 5 16

Both “lw” and “sw” (store word) belong to I-format.

MIPS has (fortunately) only three different instruction

formats. The operation codes determine the format. This

is how the control unit interprets the instructions.

opcode rs rt address

 35 19 8 32

r0

r1
r2
r3

r8 ($t0)

r17 ($s1)

r18 ($s2)

r19 ($s3)

0
4
8

12
16
20
24

0

28
32

Offset

+

MEMORY REGISTERS

Effective
address

LoadWord destination, offset($base register)

destination

(LW)

base

What is an Assembler?

Assembly Machine

Language Language

If you know the instruction formats, then you can

translate it. The machine language consists of 0’s

and 1’s

Assembler

lw t0, 32($s3)

add $s1, $s2, $t0

Binary code:

Consists of 0’s and 1’s only

A simple piece
of software

Pseudo-instructions
(Makes your life a bit simpler)

These are simple assembly language instructions that do

not have a direct machine language equivalent. During

assembly, the assembler translates each pseudo-

instruction into one or more machine language

instructions.

Example

move $t0, $t1 # $t0 ← $t1

The assembler will translate it to

add $t0, $zer0, $t1

We will see more of these soon.

Think about these

Q1. How will you load a constant into a memory

location (i.e. consider implementing x :=3)?

(Need some immediate mode instructions, like li

which is a pseudo-instruction)

Q2. How will you implement x:= x+1 in assembly

language?

What do you think?

Q3. Why is the load (and store too) instruction so

“crooked?”

Used for its flexibility, let us discuss it.

Q4. How will you load a constant (say 5) into a

register?

(Need the immediate mode instructions, like addi)

Loading a 32-bit constant into a register

The pseudo-instruction “load immediate”

 li $s0, 0x 003A0012

means “load the 32-bit constant into register $s0.”

Internally it is translated into

lui $s0, 42 # load upper-half immediate

ori $s0, $s0, 18 # (one can also use andi)

hexadecimal

Logical Operations

Shift left (logical) sll

Shift right (logical) srl

Bit-by-bit AND and, andi (and immediate)

 6 5 5 5 5 6

 src src dst

sll $t2, $s0, 4 means $t2 = $s0 << 4 bit position

(s0 = $16, t2 = $10)

 6 5 5 5 5 6

s0 = 0000 0000 0000 0000 0000 0000 0000 1001

t2 = 0000 0000 0000 0000 0000 0000 1001 0000

Why are these instructions useful?

opcode rs rt rd shift amt function

0 0 16 10 4 0

Using AND for bit manipulation

To check if a register $s0 contains an odd number,

AND it with a mask that contains all 0’s except a 1

in the LSB position, and check if the result is zero

(we will discuss decision making later)

andi $t2, $s0, 1

This uses I-type format (why?):

 6 5 5 16

Now we have to test if $t2 = 1 or 0

 8 16 10 1

andi
s0 t2

Making decisions

if (i == j) then f = g + h; else f = g – h

Use bne = branch-nor-equal, beq = branch-equal, and j = jump

Assume that f, g, h, are mapped into $s0, $s1, $s2

i, j are mapped into $s3, $s4

bne $s3, $s4, Else # goto Else when i≠j

add $s0, $s1, $s2 # f = g + h

j Exit # goto Exit (something new**)

Else: sub $s0, $s1, $s2 # f = g – h

Exit:

The program counter and control flow

Every machine has a program counter (called PC) that

points to the next instruction to be executed.

 1028

 1032

 1036 PC

 CPU

MEMORY

Ordinarily, PC is incremented by 4 after each instruction

is executed. A branch instruction alters the flow of

control by modifying the PC.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

data

data

1028

Compiling a while loop

while (A[i] == k) i = i + j;

Initially $s3, $s4, $s5 contains i, j, k respectively.

Let $s6 store the base of the array A. Each element of A

is a 32-bit word.

Loop: add $t1, $s3, $s3 # $t1 = 2*i
 add $t1, $t1, $t1 # $t1 = 4*i

add $t1, $t1, $s6 # $t1 contains address of A[i]
lw $t0, 0($t1) # $t0 contains $A[i]
add $s3, $s3, $s4 # i = i + j

bne $t0, $s5, Exit # goto Exit if A[i] ≠ k

j Loop # goto Loop
Exit: <next instruction>

Anatomy of a MIPS assembly language

program running on the MARS simulator

 .data

L1: .word 0x2345 # some arbitrary value

L2: .word 0x3366 # some arbitrary value

Res: .space 4

 .text

 .globl main

main: lw $t0, L1($0) #load the first value

 lw $t1, L2($0) # load the second value

 and $t2, $t0, $t1 # compute bit-by-bit AND

 or $t3, $t0, $t1 # compute bit-by-bit OR

 sw $t3, Res($0) # store result in memory

 li $v0, 10 # code for program end

 syscall

Another example of input-output

 .data
str1: .asciiz "Enter the number:"
 .align 2 #move to a word boundary
res: .space 4 # reserve space to store result

 .text
 .globl main
main: li $v0, 4 # code to print string
 la $a0, str1
 syscall

 li $v0, 5 # code to read integer
 syscall

 move $t0, $v0 # move the value to $t0
 add $t1, $t0, $t0 # multiply by 2
 sw $t1, res($0) # store result in memory

 li $v0, 1 # code to print integer
 move $a0, $t1 # move value to be printed to $a0
 syscall # print to the screen

 li $v0, 10 # code for program end
 syscall

