22C:060: Computer Organization Spring 2011
 Assignment 5
 Total points $=50$
 Assigned April 14, due April 21, 2011 1, 11:59:59 PM

To submit, zip (or tar) all files into a single file, and drop it to ICON drop box

Question 1. (15 points) Show how to connect 4 ($8 \mathrm{~K} \times \mathrm{l}$ bit) RAM modules to design a ($32 \mathrm{~K} \times 1$ bit) memory. A clean diagram with proper labels is essential. Briefly explain how your design will work.

Question 2. (15 points)

Using a ROM chip (and nothing else), design a logic circuit to compare two 4-bit integers A and B, and produce three binary outputs: G (A greater than B), E (A equal to B) and L (A less than B). Thus if $A=14$ and $B=8$, then $G=1, E=0, L=0$, and if $A=B$ $=12$ then $\mathbf{G}=0 . \mathrm{E}=1, \mathrm{~L}=0$.
(a) Explain your scheme, and show a part of the contents of the ROM locations. What will be size of the ROM?
(Hint: Somehow you have to enter the anticipated values of G, E, L into the ROM locations, so that the result is obtained by a simple table lookup. You can use (A, B) to address the ROM. Your answer need not show the contents of all the ROM locations, only 5-6 sample locations illustrating the design idea is sufficient.)

Question 3. (20 points) Consider a computer system with a single-level directmapped cache of size 128 bytes, and a main memory of size of 1 KB (i.e. 1024 bytes). Each line contains 8 bytes. A program running on this system accesses the following locations in consecutive steps:

1010100100 ,
1010101000 ,
1010100100 , 0100000000 , 0010100000 , 0010101100 , 0010100100 , 010000 0000, 1010100000 , 0100000000.

Assuming that the initial contents of the cache lines are completely arbitrary, show which accesses will lead to a hit, and which will cause to a miss. Also, draw a table to show how the cache tags will change in each of the above steps.

