22C:060: Computer Organization Spring 2011
 Assignment 4

Total points $=50$
Assigned March 31, due April 7, 2011 , 11:59:59 PM

Instructions to prepare and submit your homework

1. Explain the general plan of the program in Q. 1 using a readme file
2. Be generous about using comments to improve readability.
3. To submit, zip (or tar) all files into a single file, and drop it to ICON drop box

Question 1. (30 points) Write a recursive SPIM program that accepts an integer N (0 $\leq \mathrm{N} \leq 255$) and computes

$$
\operatorname{Sum}(N)=0+1+2+3+\ldots+N \text {. }
$$

Using the recursive definition:

$$
\text { Sum }(N)=\text { if } N=0 \text { then } 0 \text { else } N+\text { Sum }(N-1)
$$

Your program should display a prompt "Enter N:" After you enter the integer N, it should show the result as "Sum(N) ="

Question 2. (20 points) Design a hardware system to compute

$$
\operatorname{Sum}(N)=0+1+2+3+\ldots+N \text {. }
$$

Assume that N is an 8-bit integer. Initially a register Rl stores N , and another 16 -bit register $R 2$ is designated to store the sum $\mathrm{S}(\mathrm{N})$. Use two adders: one to decrement $R 1$ and the other to perform $R 2:=R 2+R 1$. Describe how the unit will work, how many clock pulses it will take to produce the result, and explain the role of the extra control signals if any. A legible diagram is essential for getting full credit.

