
Multiprocessor Synchronization

x

M

 P0 P1 P2 P3

Understanding interleaving semantics

Question. If each process executes x:= x+1, then

what will be final value of x?

Answer. It may be 1 or 2 or 3 or 4. Why?

P0 P1 P2 P3

R ¨x R ¨x R¨ x R ¨x

R ¨ R+1 R ¨R+1 R ¨R+1 R ¨R+1

x ¨R x ¨R x ¨R x ¨R

The final result depends on the interleaving pattern.

Atomicity of operations is important. It is determined

by the largest sequence of operations that can be

executed by any single process without interruption.

What kind of atomicity does a processor support?

The critical section problem

Process 0

Process 1

At most one process can be in the critical section at

any time (mutual exclusion). The CS may involve

shared data or resources.

Process 0 Process 1

LOCK LOCK

CS operations CS operations

UNLOCK UNLOCK

How to implement locks? Depends on the kind of

atomicity or granularity supported by the hardware.

CS

CS

What kind of atomicity a processor support?

In multiprocessors, ordinarily, read x and write x (x is

a shared data in the memory) are the only two atomic

operations. Can we implement locks using read x and

write x only?

First attempt.

{free is a shared boolean, initially true }

Processor 0 Processor 1

while not free do nothing; while not free do nothing;

free := FALSE; free := FALSE;

{CS codes}; {CS codes};

free := TRUE free := TRUE

Does not work. Why? Safety violation!

Second attempt

{turn0 and turn1 are shared boolean, initially false}

P0 P1

turn 0 := TRUE; turn 1 := TRUE

while turn1 do nothing; while turn0 do nothing;

{CS codes} {CS codes}

turn0 := FALSE; turn1 := FALSE

Does not work. Why? Danger of deadlock!

First solution proposed by Dekker in 1965. It

implements a spin-lock. To implement a queuing

lock, you need the help of the OS.

What is the difference between spin-lock and queuing

lock?

Implementing Spin-Lock

The simplest solution is due to Gary Peterson (1979):

Process 0 Process 1

try(0),try(1) : shared variables, initially false.

{Lock} {Lock}

 try(0):= true ; try(1) := true;

 turn := 0; turn := 1;

 while (turn=0 && try(1)) while (turn=1 && try(0))

do nothing; do nothing;

 critical section; critical section;

{Unlock} {Unlock}

 try(0) := false try(1):= false

It works. How will you generalize it to N processes?

Plan a tournament.

Atomic Read-Modify-Write (RMW) instructions

Locking is frequently needed, so it must be efficient.

Test & Set (X) (return X; X:= 1)

Swap (r,X) (r, X := X, r)

Fetch & Add (X) (return X; X:=X+1)

These simplify the implementation of locking.

How to implement an RMW instruction?

 X

 r r

Implementing Spin-lock using Test & Set (TS)

Initially, X=0

lock: r:= TS(X);

if r ≠ 0 then goto lock;

critical section;

unlock: X:=0

Note that if CS is large, then bus-bandwidth is

wasted. This is bad.

How to save bus-bandwidth using cache?

C C

Initially X=0, r=1

lock: if X= 0 then r:= TS (X);

if r ≠ 0 then goto lock;

critical section;

unlock: X:=0

Note. As long as X=1, X is read from the local cache, When

X changes to 0 in the shared memory, the cache entry is

invalidated.

 X

 r r

Load-Linked, Store Conditional (LL, SC)

First used by DEC Alpha for process synchronization.

Works with a snooping cache.

® LL r, x loads the value of x into register r, and

saves the address x into a link register.

® SC r, x stores r into address x only if it is the first

store (after LL r, x). The success is reported by

returning a value (r=1). Otherwise, the store fails,

and (r=0) is returned.

Example. Implement atomic x:= x+1 using LL, SC

 Initially x=0

 lock: LL r1, x;

r1 := r1+1;

SC r1, x;

if r1 = 0 then goto lock

Unlike the RMW instructions, there is no need to

lock the bus.

