Pipelined MIPS

Why pipelining?

While a typical instruction takes 3-4 cycles (i.e.
3-4 CPI), a pipelined processor targets 1 CPI

(and gets close to it).

How is it possible? By overlapping the
execution of consecutive instructions ...

Study the Laundromat example from the book.

Example of pipelining

9

30

40

40

40

Time

40 20

d

d

Pipelining doesn’t help latency
of single load, it helps
throughput of entire workload

Pipeline rate limited by slowest
pipeline stage
Multiple tasks operating

simultaneously using different
resources

Potential speedup = Number
pipe stages

Unbalanced lengths of pipe
stages reduces speedup

Time to “fill” pipeline and time
to “drain” it reduces speedup

Pipelining in a laundry
Washer takes 30 minutes
Dryer takes 40 minutes

Folding takes 20 minutes

Instruction execution review

d Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction ID Read source registers and generate control
Decode signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB | Store a result in the destination register.

J However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB
SW IF ID EX MEM

Iw IF ID EX MEM WB

Break datapath into 5 stages

U Each stage has its own functional units.
U Each stage can execute in 2ns
- Just like the multi-cycle implementation

l" e It W et 1
RegWrite
Read Instruction | [25- 21] Read l o~ Mem\Write MemToReg
address [31-0] re"&f'e' I ..e."ﬂ |
o et o Read Read 1
Instruction Fn:ad » o address dala M
memory egister 2 dal.:" Write u
Write B address X
reqister . Write Data 0
Write Registers data memory
data
MemRead
RegDst ALUSte
[[15-0] Sign
extend
2ns ns ns 2ns

It shows the rough division of responsibilities.

The buffers between stages are not shown.

Pipelining Loads

Clock cycle
1 2 3 g 5 6 7 8 9

lw $t0,4($sp) [IF [ID [EX [MEM[WB

lw $t1, 8($sp) IF | ID | EX |MEM]| WB

lw $t2, 12(Ssp) F | b | Ex [MEM [WB

lw $t3, 16(Ssp) IF | ID | EX |MEM| WB

lw $td, 20(Ssp) IF | D | Ex [MEM| WB

J A pipeline diagram shows the execution of a series of instructions.
- The instruction sequence is shown vertically, from top to bottom.
— Clock cycles are shown horizontally, from left to right.

— Each instruction is divided into its component stages. (We show five stages for
every instruction, which will make the control unit easier.)

d This clearly indicates the overlapping of instructions. For example,
there are three instructions active in the third cycle above.

— The “lw $10” instruction is in its Execute stage.
— Simultaneously, the “lw $t1" is in its Instruction Decode stage.
— Also, the “lw $t2" instruction is just being fetched.

Since multiple memory operations overlap, we

had to return to Harvard architecture!

How can the same adder perform IF and EX in
cycle 3? We need an extra adder! Gradually we
need to modify the data path for the multi-

cycle implementation.

Uniformity is simplicity

d Enforce uniformity
- Make all instructions take 5 cycles.
- Make them have the same stages, in the same order

* Some stages will do nothing for some instructions

R-type

add $sp, Ssp, -4
sub $v0, Sa0, Sat
lw $t0, 4(3sp)
or $s0, Ss1, 552
lw St1, 8(3sp)

store

IF | ID [EX [NOP|WB |
Clock cycle
1 2 3 f) 6 7 8 9
IF | ID | EX | NOP [WB
IF ID | EX |NOP[WB
IF ID | EX | MEM | WE
IF | ID | EX |[NOP
IF | ID | EX [MEM| WB
* Stores and Branches have NOP stages, too...
IF ID | EX [MEM|NOP
IF ID | EX [NOP | NOP

branch

Speedup

The steady state throughput is determined by

the time t needed by one stage.

The length of the pipeline determines the

pipeline filling time

If there are k stages, and each stage takes t
time units, then the time needed to execute N
instructions is

k.t + (N-1).t

Estimate the speedup when N=5000 and k=5

Hazards in a pipeline

Hazards refer to conflicts in the execution of a
pipeline. On example is the need for the same
resource (like the same adder) in two
concurrent actions. This is called structural
hazard. To avoid it, we have to replicate

resources. Here is another example:

lw $s1, 4($sp) IF ID EX MEM_WB
add $s0, $s1, $s2 IF ID EX MEM WB

Notice the second instruction tries to read $s1
before the first instruction complete the load!

This is known as data hazard.

Avoiding data hazards

One solution is in insert bubbles (means

delaying certain operation in the pipeline)

lw $s1, 4($sp) IF ID EX MEM WB
add $s0, $s1, $s2 IF nop nop nop ID

Another solution may require some
modification in the datapath, which will raise

the hardware cost

Hazards slow down the instruction execution

speed.

Control hazard

sub $s1, $t1, $t2 IF ID EX MEM WB
beq $s1, $zero L IF ID EX MEM
some instruction here %F ID EX

Will the correct
instruction be fetched?

There is no guarantee! The next instruction
has to wait until the predicate ($s1=0) is
resolved. Look at the tasks performed in the
five steps — the predicate is evaluated in the
EX step. Until then, the control unit will
insert nop (also called bubbles) in the

pipeline.

The Five Cycles of MIPS
(Instruction Fetch)

IR:= Memory[PC]; PC:= PC+4

(Instruction decode and Register fetch)
A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]
ALUout := PC + sign-extend(IR[15:0]]

(Execute|Memory address|Branch completion)
Memory refer: ALUout:= A+ IR[15:0]
R-type (ALU): ALUout:=Aop B
Branch: if A=B then PC:= ALUout

(Memory access | R-type completion)
LW: MDR:= Memory[ALUout]
SW: Memory[ALUout]:= B
R-type: Reg[IR[15:11]]:= ALUout

(Write back)
LW: Reg[[20:16]]:= MDR

sub $s1, $t1, $t2 IF ID EX MEM WB
beq $s1, $zero L IF ID EX MEM
Some instruction here IF c,x IF ID

No action
performed here

An alternative approach to deal with this is for
the compiler (or the assembler) to insert NOP

instructions, or reorder the instructions.

