
Multiprocessor Cache Coherence

 M M

 P P P P

The goal is to make sure that READ(X) returns the

most recent value of the shared variable X, i.e. all

valid copies of a shared variable are identical.

1. Software solutions

2. Hardware solutions

Snooping Cache Protocol

(for bus-based machines)

Directory Based Solutions

(for NUMA machines using a scalable

switch)

BUS

Software Solutions

Compiler tags data as cacheable and non-cacheable.

Only read-only data is considered cachable and put in

private cache. All other data are non-cachable, and

can be put in a global cache, if available.

 Memory
 Global cache

 P P P P

BUS

Hardware Solution: Snooping Cache

Widely used in bus-based multiprocessors.

The cache controller constantly watches the bus.

Write Invalidate

When a processor writes into C, all copies of it in

other processors are invalidated. These processors

have to read a valid copy either from M, or from the

processor that modified the variable.

Write Broadcast

Instead of invalidating, why not broadcast the updated

value to the other processors sharing that copy?

This will act as write through for shared data, and

write back for private data.

Write broadcast consumes more bus bandwidth

compared to write invalidate. Why?

MESI Protocol (Papamarcos & Patel 1984)

It is a version of the snooping cache protocol.

Each cache block can be in one of four states:

INVALID Not valid

SHARED Multiple caches may hold valid copies.

EXCLUSIVE No other cache has this block, M-block is valid

MODIFIED Valid block, but copy in M-block is not valid.

Event Local Remote

Read hit Use local copy No action

Read miss I to S, or I to E (S,E,M) to S

Write hit (S,E) to M (S,E,M) to I

Write miss I to M (S,E,M) to I

When a cache block changes its status from M, it first

updates the main memory.

Examples of state transitions under MESI protocol

A. Read Miss

x=5 x=5 x=5 x=3 x=5

 S S S I

x=5 x=5 x=5 x=5 x=5

 S S S S

x=5 x=2 x=4 x=3 x=5

 E I I I

x=5 x=2 x=4 x=5 x=5

S I I S

B. More Read Miss

x=9 x=2 x=4 x=3 x=5

 M I I I

x=9 x=2 x=4 x=3 x=9 writeback M

 try again

x=9 x=2 x=4 x=9 x=9

 S I I S

Following the read miss, the holder of the modified

copy signals the initiator to try again. Meanwhile, it

seizes the bus, and write the updated copy into the

main memory.

C. Write Miss

x=9 x=2 x=4 x=5

 M I I I

x=9 x=2 x=4 x=9 writeback M

allocate X

x=9 x=2 x=3 x=9 x=9

now modify

x=9 x=2 x=3 x=10 x=9

I I I M

Directory-based cache coherence

The snooping cache protocol does not work if there is

no bus. Large-scale shared memory multiprocessors

may connect processors with memories through

switches.

A directory has to beep track of the states of the

shared variables, and oversee that they are modified

in a consistent way. Maintenance of the directory in a

distributed environment is another issue.

Naïve solutions may lead to deadlock. Consider this:

P1 has a read miss for x2 (local to P2)

P2 has a read miss for x1 (local to P1)

Each will block and expect the other process to send

the correct value of x: deadlock (!)

Memory Consistency Models

Multiple copies of a shared variable can be found at

different locations, and any write operation must

update all of them.

Coherence vs. consistency

Cache coherence protocols guarantee that eventually

all copies are updated. Depending on how and when

these updates are performed, a read operation may

sometimes return unexpected values.

Consistency deals with what values can be returned

to the user by a read operation (may return

unexpected values if the update is not complete).

Consistency model is a contract that defines what a

programmer can expect from the machine.

Sequential Consistency

Program 1.

process 0 process 1

{initially,x=0 and y=0}

x:=1; y:=1;

if (y=0) then x:=2; if (x=0) then y:=2;

print x; print y;

If both processes run concurrently, then can we see a

printout (x=2, y=2)?

A key question is: Did process 0 read y before process

1 modified it? One possible scenario is:

 x=0 w(x,1) read y process 0

 y=0 w(y,1) read x process 1

Here, the final values are: (x=1, y=1)

 x=0 w(x,1) read y process 0

 y=0 w(y,1) read x process 1

Here, the final values are: (x=2, y=1)

Properties of SC.

SC1. All operations in a single process are executed in

program order.

SC2. The result of any execution is the same as if a

single sequential order has been maintained among all

operations.

Implementing SC

Case 1

Consider a switch-based multiprocessor.

Assume there is no cache.

 p0 p1 p2

 x y

Process 0 executes: (x:=1; y:=2)

To prevent p1 or p2 from seeing these in a different

order, p0 must receive an acknowledgement after

every write operation.

Case 2

In a multiprocessor where processors have private

cache, all invalidate signals must be acknowledged.

Write-buffers and New problems

 P cache

 buffer

 memory

Go back to the first program now.

Let both x:=1 and y:=1 be written into the write buffers,

but before the memory is updated, let the two if

statements be evaluated.

Both can be true, and (x:=2, y:= 2) are possible!

This violates sequential consistency.

