Multi-cycle implementation of MIPS

Revisit the 1-cycle version

We need a second adder, since the ALU
is already doing subtraction for the beq.

PC

.

Read Instruction
address [31-0]

Instruction
memory

Add
4 ,
Multiply constant
by 4 to get offset.
RegWrite
s 2 Read Read .
register 1 data 1 >
1[20 - 18]
Read
0 register 2 Read 0
data 2
M Write da M
u register :
I[15-11]| * Write Registers 1
1 data
RegDst ALUSre
I[15-0] | sign

Memrite

L A

= ama

Read
address

Write
address

Wiite
data

Read
data

Data
memory

MemRead

» PCSrc=1 branches
to PC+4+(offsetx4)

» PCSrc=0 continues
to PC+4,

—

MemToReg

"lextend

The multi-cycle version

PC\WWrite
o .! ALUSrcA
lorD MemRead J\
I e
RegDst RegWrite M
0 fueped Address y y N
M p»| Read Read ~ X ALU
u Memory register 1 data 1 -—\‘l} > ero
®
» Read
! Write Mem 0 register 2 Read ; Result
=M data Data " Wit data 2 .| 1 .
| u register , ALUOP
Mem\\rit X , .
Mem\Write g ;";frtl;e Registers .
0 ALUSTeB
M
u
X
1
i
MemToReg

Note that we have eliminated two adders, and
used only one memory unit (so it is Princeton
architecture) that contains both instructions
and data. It is not essential to have a single
memory unit, but it shows an alternative

design of the datapath.

Intermediate reqgisters are necessary

In each cycle, a fraction of the instruction is

PCWrite
¥
PC ALUSrcA
rD f]\
l p{ 0
RegDst RegWrite M
0 ‘-.-‘cn‘l-ﬁca:l u
»| Read Read X
M - A » ALU
e i
u =] Address register 1 data 1 \L Zero
X
) | Read
R\Write l - . Result
L Memory register 2 Read B -
| 0 data2 [™™_=g== 0
Write Mem [31-26 M Wn_Tet 4 M 1 PCSource
9E_* u register by .)
™M data Data :jJ. Z[l ¥ Wit ™ 2 ALUCPp
i rite . n
[(15-11 1 r; data Registers » 3
MemWrite [15-0 \r
nstruction 0 ALUSrcB
register
Yhale M
u Sign
Memary X extend
data >
1
register \..
L
MemToReqg

Five stages of instruction execution

Cycle 1. Instruction fetch and PC increment
Cycle 2. Reading sources from the register file
Cycle 3 Performing an ALU computation
Cycle 4 Reading or writing (data) memory
Cycle 5 Storing data back to the register file

Why intermediate reqgisters?

Sometimes we need the output of a
functional unit in a later clock cycle during

the execution of an instruction.

(Example: The instruction word fetched in stage 1
determines the destination of the register write in
stage 5. The ALU result for an address computation
in stage 3 is needed as the memory address for Iw or
sw in stage 4.)

These outputs must be stored in
intermediate registers for future use.
Otherwise they will be lost by the next

clock cycle.

(Instruction read in stage 1 is saved in Instruction
register. Register file outputs from stage 2 are saved
in registers A and B. The ALU output will be stored in
a register ALUout. Any data fetched from memory in

stage 4 is kept in the Memory data register MDR.)

The Five Cycles of MIPS

(Instruction Fetch)
IR:= Memory[PC]
PC:= PC+4
(Instruction decode and Register fetch)

A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]
ALUout := PC + sign-extend(IR[15:0]]
(Execute|Memory address|Branch completion)
Memory reference: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= Aop B
Branch: if A=B then PC := ALUout

(Memory access | R-type completion)
LW: MDR:= Memory[ALUout]
SW: Memory[ALUout]:= B
R-type: Reg[IR[15:11]]:= ALUout

(Writeback)

LW: Reg[[20:16]]:= MDR

Instruction execution review

d Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction ID Read source registers and generate control
Decode signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB | Store a result in the destination register.

J However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB
SW IF ID EX MEM

Iw IF ID EX MEM WB

We will now study the implementation of a

pipelined version of MIPS. We utilize the five

stages of implementation for this purpose.

Break datapath into 5 stages

U Each stage has its own functional units.
U Each stage can execute in 2ns
— Just like the multi-cycle implementation

A .
[2 " o “ ’_A_\
RegWrite
Read Instruction | [25 - 21) | MemWrite MemToReg
address [31-0] ::ieite] Fi:‘dJ I
|20 - 18] - et | Read Read 1
Instruction Htﬂd ; e address data "
memory 0 egister 2 o il VLS u
) data 2 ¥
M Wiite address
u register _—_— o Wiite Data 0
I[15- 11| X Wite e datg memory
1 -.| data
. MemRead
RegDst ALUSre
[[15-0] Sign
extend
2ns 1ns ns 2ns

The PC is not shown here, but can easily be added.

Also, the buffer between the stages is not shown

The implementation of pipelining becomes simpler
when you use separate instruction memory and data
memory. So we go back to our original Harvard

architecture.

Pipelined MIPS

Why pipelining?

While a typical instruction takes 3-4 cycles (i.e.
3-4 CPI), a pipelined processor targets 1 CPI

(and gets close to it).

How is it possible? By overlapping the
execution of consecutive instructions ...

Study the Laundromat example from the book.

Example of pipelining

9

30

40

40

40

Time

40 20

d

d

Pipelining doesn’t help latency
of single load, it helps
throughput of entire workload

Pipeline rate limited by slowest
pipeline stage
Multiple tasks operating

simultaneously using different
resources

Potential speedup = Number
pipe stages

Unbalanced lengths of pipe
stages reduces speedup

Time to “fill” pipeline and time
to “drain” it reduces speedup

Pipelining in a laundry
Washer takes 30 minutes
Dryer takes 40 minutes

Folding takes 20 minutes

Instruction execution review

d Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction ID Read source registers and generate control
Decode signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB | Store a result in the destination register.

J However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB
SW IF ID EX MEM

Iw IF ID EX MEM WB

