
Multi-cycle implementation of MIPS

Note that we have eliminated two adders, and

used only one memory unit (so it is Princeton

architecture) that contains both instructions

and data. It is not essential to have a single

memory unit, but it shows an alternative

design of the datapath.

Intermediate registers are necessary

In each cycle, a fraction of the instruction is

executed. Note the red boxes that are the

intermediate registers:

Five stages of instruction execution

Cycle 1. Instruction fetch and PC increment
Cycle 2. Reading sources from the register file
Cycle 3 Performing an ALU computation
Cycle 4 Reading or writing (data) memory
Cycle 5 Storing data back to the register file

Why intermediate registers?

Sometimes we need the output of a

functional unit in a later clock cycle during

the execution of an instruction.

(Example: The instruction word fetched in stage 1

determines the destination of the register write in

stage 5. The ALU result for an address computation

in stage 3 is needed as the memory address for lw or

sw in stage 4.)

These outputs must be stored in

intermediate registers for future use.

Otherwise they will be lost by the next

clock cycle.

(Instruction read in stage 1 is saved in Instruction

register. Register file outputs from stage 2 are saved

in registers A and B. The ALU output will be stored in

a register ALUout. Any data fetched from memory in

stage 4 is kept in the Memory data register MDR.)

The Five Cycles of MIPS
 (Instruction Fetch)

IR:= Memory[PC]

 PC:= PC+4

(Instruction decode and Register fetch)

 A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]

 ALUout := PC + sign-extend(IR[15:0]]

(Execute|Memory address|Branch completion)

Memory reference: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= A op B

Branch: if A=B then PC := ALUout

(Memory access | R-type completion)

 LW: MDR:= Memory[ALUout]

 SW: Memory[ALUout]:= B

 R-type: Reg[IR[15:11]]:= ALUout

(Writeback)

 LW: Reg[[20:16]]:= MDR

We will now study the implementation of a

pipelined version of MIPS. We utilize the five

stages of implementation for this purpose.

The PC is not shown here, but can easily be added.

Also, the buffer between the stages is not shown

The implementation of pipelining becomes “simpler”

when you use separate instruction memory and data

memory (We will explain it later). So we go back to

our original Harvard architecture.

Pipelined MIPS
Why pipelining? While a typical instruction takes 3-4

cycles (i.e. 3-4 CPI), a pipelined processor targets 1

CPI (and gets close to it).

Pipelining in a laundromat -- Washer takes 30

minutes --Dryer takes 40 minutes -- Folding takes 20

minutes. How does the laundromat example help

with speeding up MIPS?

